[1]李巨,單智偉,馬恩.彈性應變工程[J].中國材料進展,2018,(12):001-5.[doi:10.7502/j.issn.1674-3962.2018.12.01]
Ju Li,Zhiwei Shan,Evan Ma.Elastic Strain Engineering[J].MATERIALS CHINA,2018,(12):001-5.[doi:10.7502/j.issn.1674-3962.2018.12.01]
點擊復制
中國材料進展[ISSN:1674-3962/CN:61-1473/TG]
- 卷:
-
- 期數:
-
2018年第12期
- 頁碼:
-
001-5
- 欄目:
-
- 出版日期:
-
2018-12-31
文章信息/Info
- Title:
-
Elastic Strain Engineering
- 作者:
-
李巨; 單智偉; 馬恩
-
1. 麻省理工學院 核科學與工程系與材料科學與工程系2. 西安交通大學 金屬材料強度國家重點實驗室3. 約翰·霍普金斯大學 材料科學與工程系
- Author(s):
-
Ju Li; Zhiwei Shan; Evan Ma
-
1. Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology
2. State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University
3. Department of Materials Science and Engineering, Johns Hopkins University
-
- 關鍵詞:
-
越小越強; 超強材料; 應變工程; 應變硅; 納米材料; 帶隙; 激子; 催化
- Keywords:
-
smaller is stronger; ultrastrength material; strain engineering; strained Si; nanomaterials; bandgap; exciton; catalysis
- DOI:
-
10.7502/j.issn.1674-3962.2018.12.01
- 文獻標志碼:
-
A
- 摘要:
-
彈性應變工程是指通過改變材料彈性應變的大小來調控和優化其物化性能的技術。人們早在1950年左右就發現彈性應變可以大幅提高單晶硅中載流子的遷移率,并在上世紀90年代后期將其應用在CMOS工業中,產生了數百億美金的效益。但由于當時大彈性應變很難在其它材料體系內實現,彈性應變工程并沒有引起人們的普遍關注。近年來,隨著納米材料制備技術的蓬勃發展,人們發現納米材料能承受比其塊體母材高達50~100倍的超大彈性變形能力。這重新燃起了人們對彈性應變工程的研究興趣,并取得了很多富有應用前景的成果。例如, 理論計算和初步的實驗結果表明,拉應變能使鍺從間接帶隙半導體轉變為直接帶隙的半導體,從而顯著改變其光學特性;應變梯度不僅能增加二硫化鉬單分子層材料吸收太陽光的譜寬,而且能降低激子的束縛能,并使其沿應變增加方向定向移動;通過彈性應變調控可大幅提升光催化分解水制氫等。本文綜述了彈性應變工程的發展歷史和研究現狀,并對其未來的發展方向進行了剖析和展望,期望為本領域的研究人員提供參考!
- Abstract:
-
Elastic strain engineering (ESE) aims to utilize tensile, compressive and deviatoric shear stresses to control the physical and chemical properties of materials. It is broader than high-pressure physics, which deals with hydrostatic, compressive stress only. Since the 1950s, researchers have found that elastic strain and stress can greatly enhance the carrier mobility in semiconductors, and have utilized this in the CMOS industry since the 1990s. With the proliferation of nanomaterials that can survive large stresses (often at 10-100 times their bulk strength), ESE is receiving even more interest is recent years. For example, one may change the bandgap and even the band topology of semiconductors with stress, turning indirect-bandgap material into direct-bandgap material; one may drive exciton motion with an elastic strain gradient, which creates a bandgap gradient; one may change the surface catalytic properties with strain, etc. This article gives a brief overview of the field, and provides key references for prospective researchers.
更新日期/Last Update:
2018-11-30