免费的av网站_手机免费观看av_男人操女人下面视频_无码人妻一区二区三区一_亚洲一区二区三区四区av_色婷婷在线视频观看_第四色在线视频_国产成人精品无码片区在线_国产一级二级在线观看_日本免费网站视频

《中國材料進展網》

您現在的位置:首 頁 >Industry News > 正文

Nano-engineering the material structure of preferentially oriented nano-......

分享到:


發布時間:2020/6/29 16:30:17 瀏覽次數:5706


Nano-engineering the material structure of preferentially oriented nano-graphitic carbon for making high-performance electrochemical micro-sensors
Edoardo Cuniberto, Abdullah Alharbi, Ting Wu, Zhujun Huang, Kasra Sardashti, Kae-Dyi You, Kim Kisslinger, Takashi Taniguchi, Kenji Watanabe, Roozbeh Kiani & Davood Shahrjerdi
Scientific Reports volume 10, Article number: 9444 (2020) Cite this article

[Abstract]
Direct synthesis of thin-film carbon nanomaterials on oxide-coated silicon substrates provides a viable pathway for building a dense array of miniaturized (micron-scale) electrochemical sensors with high performance. However, material synthesis generally involves many parameters, making material engineering based on trial and error highly inefficient. Here, we report a two-pronged strategy for producing engineered thin-film carbon nanomaterials that have a nano-graphitic structure. First, we introduce a variant of the metal-induced graphitization technique that generates micron-scale islands of nano-graphitic carbon materials directly on oxide-coated silicon substrates. A novel feature of our material synthesis is that, through substrate engineering, the orientation of graphitic planes within the film aligns preferentially with the silicon substrate. This feature allows us to use the Raman spectroscopy for quantifying structural properties of the sensor surface, where the electrochemical processes occur. Second, we find phenomenological models for predicting the amplitudes of the redox current and the sensor capacitance from the material structure, quantified by Raman. Our results indicate that the key to achieving high-performance micro-sensors from nano-graphitic carbon is to increase both the density of point defects and the size of the graphitic crystallites. Our study offers a viable strategy for building planar electrochemical micro-sensors with high-performance.


[Introduction]
Carbon materials are widely used in building electrochemical sensors for detecting biomolecules because of their favorable electrochemical activity, bio-compatibility, rich surface chemistry, and strong resistance to bio-fouling. In biomolecule sensing applications, it is desirable to implement a large-scale sensing system comprising many small (micron-sized) carbon electrodes with high packing density. However, such large-scale systems are challenging to implement. In particular, existing implementations are limited mainly to one or a handful of carbon electrodes1,2,3,4,5.


Significant progress has been made on the development of single-electrode micro-sensors from bulk carbon materials, such as carbon fibers6,7 and nanotube yarns8,9. However, the large cylindrical form of these materials (>5 μm diameter) limits them to the fabrication of single or small-array micro-sensors. Importantly, while past research on this topic has evaluated a wide variety of carbon-based materials for boosting the sensor performance, the search for an optimal carbon material is still ongoing10,11,12,13. It is generally accepted that, in a carbon material, defects and functional groups influence the sensitivity and the charging current of carbon-based electrochemical sensors. However, from a fundamental standpoint, a detailed understanding of the underlying electrochemical mechanisms that control these sensor characteristics, i.e. electron transfer rate and electrode capacitance, is still a subject of research14,15,16,17.


Due to the above-mentioned limitations of bulk carbon materials in producing a dense sensor array, one promising strategy is to form thin-film carbon materials on dielectric substrates using standard microfabrication techniques. This generally involves converting lithographically-defined polymeric islands into pure sp2 hybridized carbon through a high-temperature thermal treatment (a process known as pyrolysis)18,19,20,21,22,23,24,25. Of various substrates, dielectric-coated silicon is an attractive choice because of its low cost, its commercial availability in large dimensions (up to 300?mm diameter), and its compatibility with standard micro-fabrication techniques. The latter feature is particularly useful for making functional sensor carriers from silicon substrates, e.g., by shaping silicon into narrow and flexible shafts for applications in neural interfacing. However, the thermal stability of silicon substrates limits the production temperature of these microfabricated thin-film carbon materials to below 1100?°C. Due to this temperature limit, the resulting material has a fully disordered sp2 structure with slow electron transfer kinetics. Hence, even though this microfabrication process provides a simple method for making thin-film pyrolyzed carbon materials, the resulting sensors have poor sensing characteristics18,26.

......

For any more information, please log on https://www.nature.com/articles/s41598-020-66408-9


免费的av网站_手机免费观看av_男人操女人下面视频_无码人妻一区二区三区一_亚洲一区二区三区四区av_色婷婷在线视频观看_第四色在线视频_国产成人精品无码片区在线_国产一级二级在线观看_日本免费网站视频
蜜桃传媒一区二区亚洲av| 国产欧美一区二区精品忘忧草| 亚洲欧美日韩国产综合| 国产老妇另类xxxxx| brazzers精品成人一区| 欧美一区二区日韩一区二区| 一个色综合网站| 佐山爱在线视频| 在线亚洲一区二区| 亚洲精品免费播放| 精品人妻一区二区三区免费| 色婷婷综合久久久久中文| 日韩毛片精品高清免费| 成人午夜电影网站| 国产大学生自拍| 亚洲私人影院在线观看| 99综合影院在线| 欧美丝袜第三区| 亚洲国产日韩一级| 久久久久久久无码| 日韩亚洲欧美在线| 美女mm1313爽爽久久久蜜臀| 六月婷婷七月丁香| 久久精品一区二区三区av| 国产一区二区精品在线观看| 亚洲色图日韩精品| 国产精品乱人伦中文| 丰满放荡岳乱妇91ww| 国产免费无码一区二区视频| 日韩一区在线看| 杨幂一区二区国产精品| 7777精品伊人久久久大香线蕉经典版下载| 亚洲电影欧美电影有声小说| av黄色一级片| 精品播放一区二区| 国产在线看一区| 在线看的片片片免费| 伊人婷婷欧美激情| 国产xxxx视频| 久久免费的精品国产v∧| 国产风韵犹存在线视精品| 9.1人成人免费视频网站| 一区二区三区色| 免费a级黄色片| 国产欧美精品区一区二区三区 | 久久久精品少妇| 亚洲美女少妇撒尿| 中国av免费看| 国产日产欧美一区| 91麻豆国产在线观看| 欧美一区二区视频在线观看| 精品一区二区免费| 色噜噜狠狠色综合中国| 亚洲大片精品永久免费| 免费一级做a爰片久久毛片潮| 国产精品免费视频网站| 丰满少妇中文字幕| 精品日韩一区二区三区| 成人综合婷婷国产精品久久免费| 欧美系列亚洲系列| 久久99热国产| 在线日韩一区二区| 久久成人免费网| 在线欧美日韩精品| 精品亚洲欧美一区| 欧美丝袜丝nylons| 国产在线播精品第三| 欧美偷拍一区二区| 国产一区二区三区高清播放| 91国模大尺度私拍在线视频| 蜜臂av日日欢夜夜爽一区| 男女性高潮免费网站| 日日欢夜夜爽一区| 日本青青草视频| 日本不卡视频在线观看| 日本青青草视频| 麻豆国产一区二区| 欧美色中文字幕| 国产精品中文字幕欧美| 欧美猛男超大videosgay| 国产精选一区二区三区| 51精品国自产在线| 成人avav影音| 欧美精品一区二区不卡| 国产精品二区视频| 中文欧美字幕免费| 欧美图片一区二区| 亚洲一区在线观看视频| 在线日韩国产网站| 久久精品国产精品青草| 欧美巨大另类极品videosbest| 国产福利一区二区三区视频| 欧美一区二区视频免费观看| av网站免费线看精品| 久久久久久夜精品精品免费| 日本一区二区在线观看视频| 亚洲欧洲国产日韩| 五月婷婷欧美激情| 日本vs亚洲vs韩国一区三区二区| 色哟哟一区二区| 国产精品99久久久久久久女警| 欧美一卡二卡在线| xxxxwww一片| 亚洲男人的天堂一区二区| 91av手机在线| 激情图片小说一区| 日韩一区二区麻豆国产| 精品人妻二区中文字幕| 亚洲天堂免费看| 国产午夜精品理论片在线| 久久精品72免费观看| 欧美一级一区二区| 中文字幕在线国产| 亚洲永久精品大片| 色天天综合久久久久综合片| 国产精品456| 国产视频一区不卡| 精品人妻一区二区三区四区| 日韩精品久久久久久| 欧美军同video69gay| 91超薄肉色丝袜交足高跟凉鞋| 亚洲男人电影天堂| 色婷婷av一区二区| 99国产精品久久久久久久久久 | 亚洲激情自拍偷拍| 色伊人久久综合中文字幕| 成人a区在线观看| 国产精品久久久久三级| 日日噜噜夜夜狠狠久久波多野| 国产精品1区二区.| 国产精品网站在线观看| 国产精品白丝喷水在线观看| 国产成人av一区| 中文字幕五月欧美| 色偷偷久久一区二区三区| aa级大片欧美| 亚洲综合小说图片| 欧美男女性生活在线直播观看| 精品人妻人人做人人爽夜夜爽| 亚洲一区二区偷拍精品| 欧美日韩大陆一区二区| 在线播放第一页| 日日欢夜夜爽一区| 精品精品国产高清a毛片牛牛| 制服 丝袜 综合 日韩 欧美| 精品亚洲成a人| 中文字幕国产精品一区二区| 一起操在线播放| 国产精品久久久久野外| 午夜欧美视频在线观看| 日韩亚洲电影在线| 青青草自拍偷拍| av在线不卡网| 亚洲国产一区二区三区青草影视| 91精品国产欧美一区二区成人| 91精彩刺激对白露脸偷拍| 韩国一区二区在线观看| 国产精品久久久久毛片软件| 色婷婷激情一区二区三区| 任你躁av一区二区三区| 免费成人在线播放| 日本一区二区三区久久久久久久久不| 成人在线观看小视频| 国产精品无码自拍| 麻豆91精品视频| 国产精品免费看片| 欧美日本韩国一区二区三区视频 | 99麻豆久久久国产精品免费优播| 亚洲精品国久久99热| 欧美一区二区三区不卡| 五月婷婷六月香| 91丨九色丨尤物| 蜜桃视频一区二区三区在线观看 | 精品福利一区二区三区 | 中文字幕av资源一区| 色婷婷精品大在线视频| 久久久久亚洲AV成人无码国产| 黑人巨大精品欧美黑白配亚洲| 中文字幕亚洲不卡| 欧美一区二区三区在线观看| 国产精品理论在线| 91蝌蚪porny| 精品午夜久久福利影院| 亚洲色图欧美在线| 日韩女同互慰一区二区| 日韩精品123区| 2一3sex性hd| 国产mv日韩mv欧美| 天堂午夜影视日韩欧美一区二区| 欧美精品一区二区三区一线天视频| 精品国产欧美日韩不卡在线观看| 午夜不卡久久精品无码免费| 国产专区综合网| 亚洲大尺度视频在线观看| 国产欧美日韩久久| 欧美一区二区三区人| 99热这里只有精品4| 欲求不满的岳中文字幕| 成人久久视频在线观看| 男男gaygay亚洲|