免费的av网站_手机免费观看av_男人操女人下面视频_无码人妻一区二区三区一_亚洲一区二区三区四区av_色婷婷在线视频观看_第四色在线视频_国产成人精品无码片区在线_国产一级二级在线观看_日本免费网站视频

《中國材料進展網》

您現在的位置:首 頁 >Industry News > 正文

Sequential delithiation behavior and structural rearrangement of a nanoscale ...

分享到:


發布時間:2020/6/29 16:39:59 瀏覽次數:5492


Sequential delithiation behavior and structural rearrangement of a nanoscale composite-structured Li1.2Ni0.2Mn0.6O2 during charge–discharge cycles
Keiji Shimoda, Koji Yazawa, Toshiyuki Matsunaga, Miwa Murakami, Keisuke Yamanaka, Toshiaki Ohta, Eiichiro Matsubara, Zempachi Ogumi & Takeshi Abe
Scientific Reports volume 10, Article number: 10048 (2020) Cite this article

[Abstract]
Lithium- and manganese-rich layered oxides (LMRs) are promising positive electrode materials for next-generation rechargeable lithium-ion batteries. Herein, the structural evolution of Li1.2Ni0.2Mn0.6O2 during the initial charge–discharge cycle was examined using synchrotron-radiation X-ray diffraction, X-ray absorption spectroscopy, and nuclear magnetic resonance spectroscopy to elucidate the unique delithiation behavior. The pristine material contained a composite layered structure composed of Ni-free and Ni-doped Li2MnO3 and LiMO2 (M?=?Ni, Mn) nanoscale domains, and Li ions were sequentially and inhomogeneously extracted from the composite structure. Delithiation from the LiMO2 domain was observed in the potential slope region associated with the Ni2+/Ni4+ redox couple. Li ions were then extracted from the Li2MnO3 domain during the potential plateau and remained mostly in the Ni-doped Li2MnO3 domain at 4.8?V. In addition, structural transformation into a spinel-like phase was partly observed, which is associated with oxygen loss and cation migration within the Li2MnO3 domain. During Li intercalation, cation remigration and mixing resulted in a domainless layered structure with a chemical composition similar to that of LiNi0.25Mn0.75O2. After the structural activation, the Li ions were reversibly extracted from the newly formed domainless structure.

[Introduction]
The world is moving towards electrification as CO2 emission standards have resulted in a growing battery market. Rechargeable lithium ion batteries (LIBs) have been widely used as a power source for portable devices and currently the global market for electric vehicles (EVs) demands higher power, higher energy density, longer life, and lower cost batteries. A significant amount of effort has been dedicated to the development of improved battery materials, with recent studies investigating lithium- and manganese-rich layered oxides (LMRs), which are preferred candidate materials for the next-generation LIB positive electrodes due to their high reversible capacities of ≥200?mA?h g–1 at 2.0–4.8 V1,2,3,4,5,6,7,8,9,10. In contrast, several drawbacks have been reported including capacity fading and voltage decay during long-term charge–discharge cycles6,7,8,9,10,11,12,13,14. The structural factors resulting in these problems must be solved to develop stable and high power batteries.

LMRs exhibit a layered rock-salt structure commonly represented as Li[Li(1–2×)/3MxMn(2–x)/3]O2 (M?=?Ni, Co, etc.) in single-phase notation or as xLi2MnO3·(1–x)LiMO2 in composite notation. Based on single-phase notation, the crystal structure can be indexed with a space group of C2/m, where the structure is homogeneous and Li ions occupy the Li layer and part of the transition-metal (TM) layer with intralayer ordering between the Li and TM ions. In contrast, the composite notation can be expressed as a mixture of C2/m and R–3?m structures, where Li2MnO3 (alternatively expressed as Li[Li1/3Mn2/3]O2) and LiMO2 exhibit common d spacing. These two phases are dispersed as nanoscale domains over the entire structure15. Unfortunately, X-ray diffraction (XRD) studies provided no clear indication of which structural model appropriately represents the real structure. Many atomic column observations using advanced scanning transmission electron microscopy (STEM) have provided evidence of two structural domains in the composite structure16,17,18,19, while other reports showed a homogeneous atomic column, suggesting a single-phase structure20,21,22. Solid-state nuclear magnetic resonance (NMR) spectroscopy is sensitive to cation substitution in the first and second cation coordination shells, allowing the local structure to be examined at a length scale of <5?Å in diameter. Grey et al. reported the nonrandom cation distribution around Li ions in Li[Li(1–2×)/3MxMn(2–x)/3]O2 via 6Li magic-angle spinning (MAS) NMR analyses, implying a composite nature instead of homogeneous solid solution23,24,25.

......

For any more information, please log on https://www.nature.com/articles/s41598-020-66411-0


免费的av网站_手机免费观看av_男人操女人下面视频_无码人妻一区二区三区一_亚洲一区二区三区四区av_色婷婷在线视频观看_第四色在线视频_国产成人精品无码片区在线_国产一级二级在线观看_日本免费网站视频
亚洲柠檬福利资源导航| 中字幕一区二区三区乱码| 乐播av一区二区三区| 国产美女高潮视频| 在线免费观看日本一区| 精品日韩一区二区三区| 国产精品初高中害羞小美女文| 亚洲国产一区二区在线播放| 韩国精品免费视频| 成人伦理片在线| 久久午夜夜伦鲁鲁片| 欧美手机在线观看| 欧美一级国产精品| 专区另类欧美日韩| 捆绑变态av一区二区三区| 成人免费的视频| 欧美第一页在线观看| 精品国精品国产| 男人操女人的视频在线观看欧美| 国产.欧美.日韩| 国产全是老熟女太爽了| 欧美性极品少妇| 日本一区二区成人在线| 天堂一区二区在线免费观看| 成人综合婷婷国产精品久久蜜臀| 奇米网一区二区| 欧美一级搡bbbb搡bbbb| 日韩精品高清不卡| 99热这里只有精品2| 亚洲女人久久久| 国产精品日日摸夜夜摸av| 久色婷婷小香蕉久久| a级在线免费观看| 久久久国产精华| 久久精品国产在热久久| www.av天天| 中文字幕不卡在线| a级精品国产片在线观看| 最新日韩免费视频| 26uuu国产在线精品一区二区| 亚洲成年人影院| 94色蜜桃网一区二区三区| 老熟妇高潮一区二区三区| 国产精品久久一级| 91视频.com| 日本精品视频一区二区| 国产精品九色蝌蚪自拍| 97精品国产露脸对白| 欧美日韩二区三区| 亚洲一区二区三区四区在线免费观看| 国产精品456| 国产又粗又长又黄的视频| 亚洲天堂免费看| 日韩少妇一区二区| 在线不卡a资源高清| 亚洲va国产va欧美va观看| 欧美成人午夜精品免费| 日韩免费成人网| 美腿丝袜一区二区三区| 亚洲欧美色图视频| 中文av一区二区| 亚洲精品久久一区二区三区777| 欧美日韩亚洲综合在线| 亚洲国产精品综合小说图片区| 亚洲av网址在线| 国产精品网站在线观看| 色哟哟无码精品一区二区三区| 精品久久久久久久久久久久久久久久久 | 91成人免费在线| 日本在线不卡视频| 右手影院亚洲欧美| 国产精品天美传媒沈樵| 久草免费资源站| 国产视频视频一区| 国产suv精品一区二区6| 欧美欧美欧美欧美| 国产高清成人在线| 日本天堂中文字幕| 亚洲黄一区二区三区| 五月天丁香社区| 国产视频一区二区在线| 97人妻精品一区二区三区免费 | 亚洲成va人在线观看| 日本黄色片免费观看| 日本不卡视频在线| 91国产视频在线观看| 激情欧美一区二区| 在线观看亚洲网站| 日韩 欧美一区二区三区| 国产探花在线免费观看| 裸体健美xxxx欧美裸体表演| 欧洲激情一区二区| 国产伦精品一区二区三区免费迷 | 美女网站色91| 在线观看区一区二| 国产精品456| 欧美mv日韩mv亚洲| wwwww在线观看| 欧美大尺度电影在线| 99国产精品久久久久久久久久久| 2020国产精品自拍| 中文字幕人妻一区二区三区| 亚洲视频免费看| 91ts人妖另类精品系列| 奇米精品一区二区三区在线观看| 在线精品亚洲一区二区不卡| 国产精品18久久久久久久久| 日韩免费视频一区二区| 国产成人精品一区二区三区在线观看| 国产精品天干天干在观线| 欧美多人猛交狂配| 天天影视色香欲综合网老头| 91成人国产精品| 成人免费视频app| 国产亚洲婷婷免费| 久久久久久久久久久久| 日韩影院免费视频| 欧美人牲a欧美精品| 97超碰欧美中文字幕| 中文字幕一区二区三区不卡在线| 中文字幕免费高清视频| 亚洲精品欧美二区三区中文字幕| 亚洲怡红院在线观看| 国产剧情一区二区| 久久久久久日产精品| 国产肥白大熟妇bbbb视频| 日韩av在线播放中文字幕| 欧美精品一级二级| 免费看三级黄色片| 一卡二卡三卡日韩欧美| 手机免费观看av| 韩国av一区二区| 国产亚洲视频系列| 男人的午夜天堂| 国产成人午夜精品影院观看视频| 国产色91在线| 日韩在线观看免| 成人av在线资源| 久久久九九九九| 欧美日韩中文字幕视频| 日韩中文字幕区一区有砖一区| 在线播放中文一区| 亚洲天堂成人av| 免费美女久久99| 久久综合九色综合欧美98| 日韩av片在线| 国产aⅴ综合色| 亚洲视频免费在线| 欧美三级日韩在线| 免费黄色三级网站| 蜜桃视频免费观看一区| 久久午夜色播影院免费高清| 美女av免费看| 成人精品免费看| 一区二区三区欧美日| 欧美日本在线看| 久久无码人妻精品一区二区三区| 理论电影国产精品| 国产女人18水真多18精品一级做| 国产男男chinese网站| 久久av中文字幕片| 国产精品私人自拍| 日本高清不卡一区| 小毛片在线观看| 国产资源在线一区| 综合久久久久综合| 91.xcao| 成人激情五月天| 不卡的av在线播放| 午夜激情综合网| 久久久久久亚洲综合影院红桃| 人妻少妇精品一区二区三区| 亚洲妇女无套内射精| 蜜臀久久99精品久久久久久9| 国产亚洲精品福利| 在线观看不卡一区| 欧美激情aaa| 成人动漫一区二区在线| 亚洲二区在线观看| 久久精品人人做| 欧美视频你懂的| www.狠狠爱| 99精品热视频| 蜜桃免费网站一区二区三区| 国产精品美女久久久久久2018| 欧美性色综合网| 欧美 日韩 成人| 91丨九色丨蝌蚪富婆spa| 久久精品国产久精国产爱| 成人免费在线视频观看| 日韩一区二区免费视频| av在线网站观看| 粉嫩一区二区三区在线看| 亚洲va欧美va天堂v国产综合| 久久久国产精品麻豆| 欧美视频中文字幕| 青娱乐国产视频| 亚洲天堂小视频| 国产精品一区二区三区网站| 亚洲线精品一区二区三区|