免费的av网站_手机免费观看av_男人操女人下面视频_无码人妻一区二区三区一_亚洲一区二区三区四区av_色婷婷在线视频观看_第四色在线视频_国产成人精品无码片区在线_国产一级二级在线观看_日本免费网站视频

《中國材料進展網》

您現在的位置:首 頁 >Industry News > 正文

Facile Tuning of the Mechanical Properties of a Biocompatible Soft Material

分享到:


發布時間:2019/5/10 16:14:37 瀏覽次數:1454


Facile Tuning of the Mechanical Properties of a Biocompatible Soft Material

Abstract
Herein, we introduce a method to locally modify the mechanical properties of a soft, biocompatible material through the exploitation of the effects induced by the presence of a local temperature gradient. In our hypotheses, this induces a concentration gradient in an aqueous sodium alginate solution containing calcium carbonate particles confined within a microfluidic channel. The concentration gradient is then fixed by forming a stable calcium alginate hydrogel. The process responsible for the hydrogel formation is initiated by diffusing an acidic oil solution through a permeable membrane in a 2-layer microfluidic device, thus reducing the pH and freeing calcium ions. We characterize the gradient of mechanical properties using atomic force microscopy nanoindentation measurements for a variety of material compositions and thermal conditions. Significantly, our novel approach enables the creation of steep gradients in mechanical properties (typically between 10–100 kPa/mm) on small scales, which will be of significant use in a range of tissue engineering and cell mechanosensing studies.


Introduction
Gradients of mechanical properties are found in innumerable natural systems and phenomena and at all length scales1,2,3. The behaviour of cells cultivated on substrates of different stiffness have been widely studied in recent years, unveiling how migration4,5,6, proliferation6,7, adhesion5,8 and also differentiation7,9,10 are dependent on the characteristics of the material upon which the cells proliferate. To date most of these studies have considered materials of defined but uniform rigidity, with few assessing biocompatible materials possessing a rigidity gradient11,12,13. This is relevant, for example, for the osteotendinous insertion, the tissue formed by differentiations of Mesenchymal Stem Cells (MSCs) that connects the soft tendinous and the rigid osseous tissue. This is characterised by a gradient of stiffness responsible for the differentiation of the stem cells14. In this respect, control over the Young’s modulus of such materials is extremely limited. Herein, we show for the first time the creation, tuning and control of mechanical property in biocompatible materials by inducing a concentration gradient through the application of thermophoretic forces. Significantly, the ability to impose and control temperature gradients across a microfluidic channel allows facile manipulation of elasticity gradients in the final material.

Two major challenges faced when generating rigidity gradients relate to the availability of polymers that permit the formation of the desired gradient in mechanical property and the accessibility of formation methodologies. Unsurprisingly, both issues are closely related, with biocompatibility requirements further complicating the undertaking.

Traditionally, the rigidity of a gel can be tuned by controlling the degree of crosslinking or the initial monomer concentration. For example, the use of an optical mask containing a spatial gradient in transparency can be used to control light intensity during the photo-polymerization process12. Alternatively, a microfluidic gradient generator15 and a photo-polymerization step can be used to “fix” a desired concentration gradient within a material. Nevertheless, the main limitations of such techniques relate to the choice of the substrate material, which is restricted to UV curable polymers, and reduced control over the magnitude of the rigidity gradient.

To address the aforementioned limitations, we herein exploit the possibility to accurately impose and control a temperature gradient within a microfluidic device to create a novel class of biocompatible material presenting a rigidity gradient, based on crosslinked calcium alginate constrained within microfluidic geometries. In the presence of a temperature gradient, the solutes dispersed in solution are affected by thermophoresis which induces the formation of a concentration gradient. Here we suggest a mechanism based on the combined effect of the thermophoretic drift of each component dispersed in the aqueous solution of sodium alginate to explain the obtained results. Significantly, since thermophoresis can be applied to any kind of solute dispersed in solution, the basic method can be easily extended to any polymer or hydrogel undergoing a polymerization or sol-gel process. The main advantage of our proposed approach is the fact that we can effectively decouple the control over the local stiffness of the material from the polymerisation process. By exploiting thermophoresis, we can induce a gradient of mechanical properties that is independent from the choice of the material. For example, the concentration gradient can be gently tuned by thermophoresis in a delicate biocompatible hydrogel using only minute temperature differences that do not alter the overall properties of the material and then, independently, the material can be crosslinked.

Thermophoresis is a physical phenomenon discovered over one century ago16,17. Briefly, in the presence of a temperature gradient, a solute dispersed in solution will migrate along that temperature gradient and accumulate either on the ‘cold’ or the ‘hot’ side depending on the specific solute-solvent interactions18, average temperature19, solute size20,21 or type of dispersed electrolyte22. At steady-state, the mass flux, Jm, is zero and the concentration gradient is counterbalanced by the temperature gradient (Eq. 1), where the gradient is assumed to be along the z-axis, i.e.

$$\begin{array}{ccc}{J}_{m} & = & \rho [D\frac{dc}{dz}-c(1-c){D}_{T}\frac{dT}{dz}]\\ {J}_{m} & = & 0\to \frac{dc}{dz}=-\,c(1-c){S}_{T}\frac{dT}{dz}\end{array}$$ (1)
here, ρ is the density of the solute, c is the concentration, D is the diffusion coefficient, DT is the thermophoretic mobility and ST the so called Soret coefficient, equal to DT/D. In simple terms, the Soret coefficient is positive when solute accumulates on the low temperature side and negative when accumulation occurs on the high-temperature side.

The concentration gradient induced by thermophoresis is proportional to the temperature gradient and, as a consequence, at small scales typical of microfluidic devices, only a very limited temperature difference is required over the biocompatible material to generate the required mechanical properties gradient, and no other material property is influenced by this.

For any more information, please log on  https://www.nature.com/articles/s41598-019-43579-8


免费的av网站_手机免费观看av_男人操女人下面视频_无码人妻一区二区三区一_亚洲一区二区三区四区av_色婷婷在线视频观看_第四色在线视频_国产成人精品无码片区在线_国产一级二级在线观看_日本免费网站视频
久久久www免费人成精品| 奇米精品一区二区三区四区| 国产成+人+日韩+欧美+亚洲| 老牛影视av老牛影视av| 欧美欧美欧美欧美首页| 亚洲男人的天堂在线观看| 国产99精品在线观看| 国产美女网站视频| 2021久久国产精品不只是精品| 日韩不卡一区二区三区| 精品人妻一区二区三区日产| 欧美精品一级二级| 亚洲午夜国产一区99re久久| 美女流白浆视频| 欧美三级电影网站| 亚洲一区二区精品3399| 男人的天堂免费| 欧美日韩亚洲另类| 亚洲福利视频一区| 黑森林av导航| 欧美一区三区二区| 奇米精品一区二区三区在线观看一 | 国产成人啪午夜精品网站男同| 成人黄色免费网址| 久久久精品综合| 国产成人在线视频网址| 久久嫩草捆绑紧缚| 亚洲欧洲99久久| 94色蜜桃网一区二区三区| 欧美性猛片xxxx免费看久爱| 亚洲电影中文字幕在线观看| 中文字幕精品久久久| 欧美大片在线观看一区| 韩国av一区二区三区在线观看| 亚洲一二三精品| 国产精品国产a| 91视频在线看| 欧美疯狂做受xxxx富婆| 蜜臀av性久久久久蜜臀aⅴ四虎| 亚洲天堂岛国片| 国产精品欧美一级免费| 91亚洲精品一区二区乱码| 7777精品伊人久久久大香线蕉的| 日本亚洲视频在线| 成人激情五月天| 国产精品久久久久aaaa樱花| 日本r级电影在线观看| 欧美精品三级在线观看| 久久电影网电视剧免费观看| 美女三级黄色片| 一区二区三区在线观看动漫| 亚洲熟女乱综合一区二区三区| 久久婷婷成人综合色| 成人黄色在线看| 精品视频免费看| 久久精品二区亚洲w码| 中文字幕在线2021| 亚洲国产日韩一级| www.99热| 亚洲激情自拍视频| 熟女丰满老熟女熟妇| 国产精品丝袜91| 亚洲美女精品视频| 久久久欧美精品sm网站| aaa国产一区| 日韩精品一区二区三区老鸭窝| 国产成人精品午夜视频免费| 欧美男女性生活在线直播观看| 精品亚洲成a人| 欧美专区亚洲专区| 九色综合狠狠综合久久| 校园春色 亚洲| 美洲天堂一区二卡三卡四卡视频| av激情在线观看| 日韩综合一区二区| 日韩在线观看视频一区二区| 视频一区二区欧美| 极品盗摄国产盗摄合集| 日韩中文字幕区一区有砖一区| 国产一二三av| 日韩精品欧美成人高清一区二区| 伊人在线视频观看| 免费美女久久99| 色狠狠综合天天综合综合| 久久99精品国产麻豆不卡| 在线观看免费一区| 美女视频网站黄色亚洲| 色悠悠久久综合| 激情小说亚洲一区| 在线成人免费视频| av成人免费在线| 久久婷婷国产综合精品青草| 日批视频免费看| 国产精品成人免费精品自在线观看 | 视频一区欧美精品| 色老综合老女人久久久| 国产一区三区三区| 日韩欧美高清在线| 91蝌蚪porny成人天涯| 欧美激情一区三区| 亚洲a v网站| 亚洲va欧美va国产va天堂影院| 中文字幕电影av| 精品一区二区日韩| 欧美一区二区三区四区视频| 91老师国产黑色丝袜在线| 国产精品色哟哟网站| 亚洲av成人无码久久精品| 天天影视色香欲综合网老头| 欧美色视频在线观看| 成人精品视频.| 中文字幕免费不卡在线| 男女做爰猛烈刺激| 视频一区视频二区中文| 欧美军同video69gay| 91蝌蚪porny| 亚洲精品免费播放| 精品一区在线观看视频| 国产精品一区二区视频| 久久综合九色综合欧美就去吻| 久久国产精品影院| 午夜精品久久久久久久蜜桃app| 欧美色爱综合网| 91免费版在线看| 亚洲欧美一区二区久久| 免费在线观看一级片| 成人性色生活片| 国产精品乱人伦中文| 免费成人深夜蜜桃视频| 国产乱码一区二区三区| 久久亚洲二区三区| 在线观看日本中文字幕| 久草中文综合在线| 日韩欧美aaaaaa| 日韩av一二区| 蜜桃视频在线观看一区二区| 日韩一区二区三区精品视频| 中文字幕乱码在线| 日韩vs国产vs欧美| 欧美不卡一区二区三区四区| 一道本在线观看| 韩国女主播成人在线| 久久久精品综合| 欧美h片在线观看| zzijzzij亚洲日本少妇熟睡| 国产精品亲子乱子伦xxxx裸| 182在线观看视频| 成人免费毛片片v| 亚洲欧美日韩国产综合在线| 91久久精品午夜一区二区| 免费国偷自产拍精品视频| 亚洲福利视频三区| 欧美一级日韩一级| 人妻aⅴ无码一区二区三区| 国产一区二区视频在线播放| 欧美激情一区二区三区四区| 一本色道久久综合亚洲aⅴ蜜桃 | 老熟妇一区二区| 国产高清精品在线| 亚洲欧美一区二区三区极速播放| 欧美少妇一区二区| 在线观看国产免费视频| 韩日av一区二区| 国产精品国产a| 欧美日韩成人一区二区| 免费a级黄色片| 国精品**一区二区三区在线蜜桃| 国产精品久久久久久久久快鸭| 在线看日本不卡| av网站有哪些| 国产成人av资源| 一区二区三区在线观看网站| 欧美一级黄色大片| 国产一区二区三区视频播放| 日韩久久久久久久久久久| 天天综合色天天| 国产视频一区不卡| 在线影院国内精品| 一二三不卡视频| 国产不卡视频一区| 一区二区三区**美女毛片| 日韩免费观看高清完整版在线观看| 极品色av影院| 无码任你躁久久久久久老妇| 精品伊人久久久久7777人| 中文字幕永久在线不卡| 欧美一卡在线观看| 综合 欧美 亚洲日本| 91丨国产丨九色丨pron| 久久99久久久久| 亚洲三级视频在线观看| 日韩三级中文字幕| 色婷婷激情综合| 国产三级av在线播放| 91免费视频网址| 国产精品一区二区三区99| 午夜精品免费在线观看| 国产精品超碰97尤物18| 欧美一卡在线观看| 色婷婷av久久久久久久|