免费的av网站_手机免费观看av_男人操女人下面视频_无码人妻一区二区三区一_亚洲一区二区三区四区av_色婷婷在线视频观看_第四色在线视频_国产成人精品无码片区在线_国产一级二级在线观看_日本免费网站视频

《中國材料進展網》

您現在的位置:首 頁 >Industry News > 正文

Text mining facilitates materials discovery

分享到:


發布時間:2019/7/11 14:41:01 瀏覽次數:1295


Text mining facilitates materials discovery

Computer algorithms can be used to analyse text to find semantic relationships between words without human input. This method has now been adopted to identify unreported properties of materials in scientific papers.


The total number of materials that can potentially be made — sometimes referred to as materials space — is vast, because there are countless combinations of components and structures from which materials can be fabricated. The accumulation of experimental data that represent pockets of this space has created a foundation for the emerging field of materials informatics, which integrates high-throughput experiments, computations and data-driven methods into a tight feedback loop that enables rational materials design. Writing in Nature, Tshitoyan et al.1 report that knowledge of materials science ‘hidden’ in the text of published papers can be mined effectively by computers without any guidance from humans.


The discovery of materials that have a particular set of properties has always been a serendipitous process requiring extensive experimentation — a combination of craft and science practised by knowledgeable artisans. However, this trial-and-error approach is expensive and inefficient. There is therefore great interest in using machine learning to make materials discovery more efficient.

Currently, most machine-learning applications aim to find an empirical function that maps input data (for example, parameters that define a material’s composition) to a known output (such as measured physical or electronic properties). The empirical function can then be used to predict the property of interest for new input data. This approach is said to be supervised, because the process of learning from the training data is akin to a teacher supervising students by selecting the subjects and facts needed for a particular lesson. A contrasting approach involves using only input data, which have no obvious connection to a specific output. In this case, the goal is to identify intrinsic patterns in the data, which are then used to classify those data. Such an approach is called unsupervised learning, because there are no a priori correct answers and there is no teacher.

Tshitoyan and colleagues collected 3.3 million abstracts from papers published in the fields of materials science, physics and chemistry between 1922 and 2018. These abstracts were processed and curated, for example to remove text that wasn’t in English and to exclude abstracts that had unsuitable metadata types, such as ‘Erratum’ or ‘Memorial’. This left 1.5 million abstracts, which were written using a vocabulary of about 500,000 words.

The authors then analysed the curated text using an unsupervised machine-learning algorithm known as Word2vec2, which was developed to enable computers to process text and natural language. Word2vec takes a large body of text and passes it through an artificial neural network (a type of machine-learning algorithm) to map each word in the vocabulary to a numeric vector, each of which typically has several hundred dimensions. The resulting word vectors are called embeddings, and are used to position each word, represented as a data point, in a multidimensional space that represents the vocabulary. Words that share common meanings form clusters within that space. Word2vec can therefore make accurate estimates about the meaning of words, or about the functional relationships between them, on the basis of the patterns of usage of the words in the original text. Importantly, these meanings and relationships are not explicitly encoded by humans, but are learnt in an unsupervised way from the analysed text.


The researchers found that the obtained word embeddings for materials-science terms produced word associations that reflect rules of chemistry, even though the algorithm did not use any specific labels to identify or interpret chemical concepts. When combined using various mathematical operations, the embeddings identified word associations that corresponded to concepts such as ‘chemical elements’, ‘oxides’, ‘crystal structures’, and so on. The embeddings also identified clusters of known materials (Fig. 1) corresponding to categorizations that could be used to classify new materials made in the future.


 For any more information, please log on https://www.nature.com/articles/d41586-019-01978-x
免费的av网站_手机免费观看av_男人操女人下面视频_无码人妻一区二区三区一_亚洲一区二区三区四区av_色婷婷在线视频观看_第四色在线视频_国产成人精品无码片区在线_国产一级二级在线观看_日本免费网站视频
亚洲综合小说图片| 亚洲成人777| 韩国女主播一区| www.日本高清| 欧美日韩一区二区三区四区| 欧美激情综合在线| 国产美女一区二区| 日韩女同一区二区三区| 精品国产麻豆免费人成网站| 蜜臀久久久99精品久久久久久| fc2成人免费视频| 欧美区在线观看| 亚洲与欧洲av电影| 在线观看一区二区三区四区| 欧美日免费三级在线| 一区二区三区精品在线观看| 妖精视频在线观看| 欧美三级日韩在线| 午夜精品一区在线观看| 岛国av免费观看| 91精品国产综合久久精品app| 国产精品午夜免费| 丁香网亚洲国际| 色综合色综合色综合色综合色综合 | 国产成人精品三级麻豆| 天美传媒免费在线观看| 国产嫩草影院久久久久| 国产精品一级二级三级| av最新在线观看| 中文字幕一区二区三区色视频 | 欧美精品一区二区在线观看| 久久99精品久久久久久国产越南| 一区二区精品免费| 国产清纯美女被跳蛋高潮一区二区久久w | 欧美本精品男人aⅴ天堂| 精品一区二区三区在线观看国产 | 国产一区二区免费视频| 国内毛片毛片毛片毛片毛片| 国产精品黄色在线观看| 91麻豆视频网站| 欧美色欧美亚洲另类二区| 亚洲.国产.中文慕字在线| 久久久国产精品无码| 精品国产伦一区二区三区观看方式 | 久久久久久久av麻豆果冻| 国产激情精品久久久第一区二区 | 国产喷白浆一区二区三区| 成人污污视频在线观看| 在线观看av一区二区| 亚洲国产婷婷综合在线精品| 亚洲午夜久久久久久久久红桃| 久久免费电影网| 成人免费高清视频在线观看| 欧美日韩精品专区| 精品一区二区影视| 日本福利一区二区| 日韩精品一二三四| 能直接看的av| 亚洲精品成人天堂一二三| 熟女人妻在线视频| 国产欧美一区二区在线观看| 成人av网站在线| 777久久久精品| 韩国av一区二区三区在线观看| 色哟哟一区二区| 日本欧美肥老太交大片| 最新av电影网站| 午夜精品福利一区二区三区av | 国产精品300页| 国产精品久久久久久久第一福利| 99久久久无码国产精品性波多 | 日本一区二区在线不卡| av在线天堂网| 国产日本一区二区| 亚洲啪av永久无码精品放毛片| 337p日本欧洲亚洲大胆色噜噜| 懂色av噜噜一区二区三区av| 91精品在线一区二区| 国产91色综合久久免费分享| 欧美美女一区二区在线观看| 国产精品1区2区| 91精品国产美女浴室洗澡无遮挡| 成人免费毛片高清视频| 在线观看91av| 国产精品一区二区视频| 欧美日韩精品一区二区在线播放| 久久99久久久久| 亚洲熟女www一区二区三区| 日日夜夜精品视频天天综合网| 免费黄色在线网址| 天天亚洲美女在线视频| 手机免费观看av| 日本亚洲三级在线| 色噜噜久久综合| 久久99深爱久久99精品| 91久久精品国产91性色tv| 久久精品国产久精国产| 91高清视频在线| 国产在线视频精品一区| 精品视频一区 二区 三区| 粉嫩av一区二区三区在线播放| 日韩精品一区在线| 91成人在线观看喷潮蘑菇| 久久久久久久久97黄色工厂| 性感美女一区二区三区| 国产精品久久一卡二卡| 国产亚洲精品熟女国产成人| 亚洲一区二区三区不卡国产欧美| 五月天色婷婷丁香| 韩日精品视频一区| 日韩视频永久免费| 午夜剧场免费看| 亚洲日本在线看| 农村老熟妇乱子伦视频| 精品在线免费观看| 精品欧美一区二区久久| 日本黄色录像片| 一区二区三区日韩欧美| 日本久久电影网| 成年人国产精品| 国产精品理论在线观看| 欧洲美女女同性互添| 激情综合亚洲精品| 日韩欧美精品在线| 成人手机在线免费视频| 亚洲女人的天堂| 91人妻一区二区三区蜜臀| 国产精品资源在线观看| 久久久精品免费观看| jizz18女人高潮| 国产麻豆视频一区二区| 欧美精品一区二区在线观看| 国产一级久久久久毛片精品| 久久 天天综合| 日韩免费视频一区二区| 亚洲综合自拍网| 丝瓜av网站精品一区二区| 欧美久久久一区| 亚洲少妇中文字幕| 亚洲成人tv网| 日韩一区二区视频| 精品少妇人妻一区二区黑料社区| 人人精品人人爱| 精品国产乱码久久久久久牛牛| 日本黄色小视频在线观看| 国产一区亚洲一区| 国产欧美日本一区视频| av成人免费网站| 99免费精品在线观看| 亚洲综合色自拍一区| 在线精品视频免费播放| 香蕉久久久久久av成人| 日韩高清一区二区| 久久夜色精品国产噜噜av | 欧美主播一区二区三区| 又大又长粗又爽又黄少妇视频| 亚洲va欧美va天堂v国产综合| 91精品国产品国语在线不卡| 中日韩精品一区二区三区| 美女国产一区二区| 国产欧美日韩精品在线| 色综合中文综合网| 欧美三级视频在线观看| aa一级黄色片| 国产一区二区三区四区在线观看| 国产精品剧情在线亚洲| 国精产品一区一区二区三区mba| 成人高清在线视频| 亚洲成人中文在线| www日韩大片| 午夜av入18在线| 大尺度做爰床戏呻吟舒畅| 精品系列免费在线观看| 日韩美女视频19| 欧美一区二区在线看| 又色又爽的视频| 91亚洲国产成人精品一区二区三 | 久久99精品视频| 日韩一区在线免费观看| 91精品福利在线一区二区三区| 国产精品久久免费观看| 91热门视频在线观看| 午夜成人免费电影| 欧美韩国日本不卡| 欧美日韩国产免费一区二区| 五月天综合视频| 波多野结衣一区二区三区| 亚洲v中文字幕| 中文一区一区三区高中清不卡| 欧美日韩高清一区二区不卡| 中文字幕av久久爽一区| 手机看片国产精品| 久久国产视频网| 亚洲色图视频网| 精品国产免费一区二区三区香蕉| 国产极品国产极品| 国产精品毛片一区二区| 91麻豆swag| 国产毛片精品视频| 图片区日韩欧美亚洲|