免费的av网站_手机免费观看av_男人操女人下面视频_无码人妻一区二区三区一_亚洲一区二区三区四区av_色婷婷在线视频观看_第四色在线视频_国产成人精品无码片区在线_国产一级二级在线观看_日本免费网站视频

《中國材料進展網》

您現在的位置:首 頁 >Industry News > 正文

Nano-engineering the material structure of preferentially oriented nano-......

分享到:


發布時間:2020/6/29 16:30:17 瀏覽次數:5708


Nano-engineering the material structure of preferentially oriented nano-graphitic carbon for making high-performance electrochemical micro-sensors
Edoardo Cuniberto, Abdullah Alharbi, Ting Wu, Zhujun Huang, Kasra Sardashti, Kae-Dyi You, Kim Kisslinger, Takashi Taniguchi, Kenji Watanabe, Roozbeh Kiani & Davood Shahrjerdi
Scientific Reports volume 10, Article number: 9444 (2020) Cite this article

[Abstract]
Direct synthesis of thin-film carbon nanomaterials on oxide-coated silicon substrates provides a viable pathway for building a dense array of miniaturized (micron-scale) electrochemical sensors with high performance. However, material synthesis generally involves many parameters, making material engineering based on trial and error highly inefficient. Here, we report a two-pronged strategy for producing engineered thin-film carbon nanomaterials that have a nano-graphitic structure. First, we introduce a variant of the metal-induced graphitization technique that generates micron-scale islands of nano-graphitic carbon materials directly on oxide-coated silicon substrates. A novel feature of our material synthesis is that, through substrate engineering, the orientation of graphitic planes within the film aligns preferentially with the silicon substrate. This feature allows us to use the Raman spectroscopy for quantifying structural properties of the sensor surface, where the electrochemical processes occur. Second, we find phenomenological models for predicting the amplitudes of the redox current and the sensor capacitance from the material structure, quantified by Raman. Our results indicate that the key to achieving high-performance micro-sensors from nano-graphitic carbon is to increase both the density of point defects and the size of the graphitic crystallites. Our study offers a viable strategy for building planar electrochemical micro-sensors with high-performance.


[Introduction]
Carbon materials are widely used in building electrochemical sensors for detecting biomolecules because of their favorable electrochemical activity, bio-compatibility, rich surface chemistry, and strong resistance to bio-fouling. In biomolecule sensing applications, it is desirable to implement a large-scale sensing system comprising many small (micron-sized) carbon electrodes with high packing density. However, such large-scale systems are challenging to implement. In particular, existing implementations are limited mainly to one or a handful of carbon electrodes1,2,3,4,5.


Significant progress has been made on the development of single-electrode micro-sensors from bulk carbon materials, such as carbon fibers6,7 and nanotube yarns8,9. However, the large cylindrical form of these materials (>5 μm diameter) limits them to the fabrication of single or small-array micro-sensors. Importantly, while past research on this topic has evaluated a wide variety of carbon-based materials for boosting the sensor performance, the search for an optimal carbon material is still ongoing10,11,12,13. It is generally accepted that, in a carbon material, defects and functional groups influence the sensitivity and the charging current of carbon-based electrochemical sensors. However, from a fundamental standpoint, a detailed understanding of the underlying electrochemical mechanisms that control these sensor characteristics, i.e. electron transfer rate and electrode capacitance, is still a subject of research14,15,16,17.


Due to the above-mentioned limitations of bulk carbon materials in producing a dense sensor array, one promising strategy is to form thin-film carbon materials on dielectric substrates using standard microfabrication techniques. This generally involves converting lithographically-defined polymeric islands into pure sp2 hybridized carbon through a high-temperature thermal treatment (a process known as pyrolysis)18,19,20,21,22,23,24,25. Of various substrates, dielectric-coated silicon is an attractive choice because of its low cost, its commercial availability in large dimensions (up to 300?mm diameter), and its compatibility with standard micro-fabrication techniques. The latter feature is particularly useful for making functional sensor carriers from silicon substrates, e.g., by shaping silicon into narrow and flexible shafts for applications in neural interfacing. However, the thermal stability of silicon substrates limits the production temperature of these microfabricated thin-film carbon materials to below 1100?°C. Due to this temperature limit, the resulting material has a fully disordered sp2 structure with slow electron transfer kinetics. Hence, even though this microfabrication process provides a simple method for making thin-film pyrolyzed carbon materials, the resulting sensors have poor sensing characteristics18,26.

......

For any more information, please log on https://www.nature.com/articles/s41598-020-66408-9


免费的av网站_手机免费观看av_男人操女人下面视频_无码人妻一区二区三区一_亚洲一区二区三区四区av_色婷婷在线视频观看_第四色在线视频_国产成人精品无码片区在线_国产一级二级在线观看_日本免费网站视频
韩国成人精品a∨在线观看| a级大片在线观看| 一本到三区不卡视频| 26uuuu精品一区二区| 日韩高清在线不卡| 久久久久久久久久久久国产精品| 色哟哟在线观看一区二区三区| 中文av一区二区| 国产精品综合二区| 你懂得视频在线观看| www久久精品| 久草热8精品视频在线观看| 亚洲自拍偷拍一区二区| 日韩视频在线你懂得| 免费高清在线一区| 男女做爰猛烈刺激| 精品电影一区二区三区| 久久成人免费日本黄色| jizz中文字幕| 国产调教视频一区| 国产精品一二三区| 欧美偷拍第一页| 亚洲嫩草精品久久| av电影中文字幕| 欧美久久久久久久久| 亚洲v精品v日韩v欧美v专区| 亚洲 欧美 日韩在线| 欧美大胆一级视频| 极品销魂美女一区二区三区| 亚洲色图27p| 亚洲欧洲日韩综合一区二区| 91在线视频播放地址| 欧美色图天堂网| 日韩电影在线一区| 久久国产柳州莫菁门| 中文字幕不卡在线播放| 99久久国产综合精品麻豆| 欧美日韩成人高清| 美洲天堂一区二卡三卡四卡视频| 国产伦精品一区二区三区视频女| 国产女人aaa级久久久级| 成年人国产精品| 欧美日韩情趣电影| 免费精品视频在线| 美国一级片在线观看| 亚洲精品伦理在线| 污片免费在线观看| 国产午夜精品一区二区三区四区| 成人免费毛片片v| 欧美老肥妇做.爰bbww视频| 麻豆久久一区二区| 中文字幕电影av| 亚洲一级二级在线| 久久午夜福利电影| 亚洲欧洲99久久| 伦理片一区二区| 国产亚洲午夜高清国产拍精品| 成a人片亚洲日本久久| 91精品国产乱码久久蜜臀| 国产在线播放一区| 欧美亚州韩日在线看免费版国语版| 日产欧产美韩系列久久99| 91狠狠综合久久久| 亚洲国产三级在线| 性爱在线免费视频| 亚洲一区电影777| 国产精品1区2区3区4区| 亚洲一区在线观看免费| 日韩一级av毛片| 一区二区三区免费网站| 亚洲图片另类小说| 亚洲一区二区中文在线| 欧美日韩生活片| 亚洲成人动漫在线观看| 永久免费看片视频教学| 爽好多水快深点欧美视频| 天海翼在线视频| 爽好多水快深点欧美视频| 91嫩草|国产丨精品入口| 热久久久久久久| 在线精品视频一区二区三四| 精品一区二区久久| 欧美高清性hdvideosex| 成人免费不卡视频| 精品国产亚洲一区二区三区在线观看| 成人av资源在线| 久久女同互慰一区二区三区| 精品人妻一区二区乱码| 中文字幕的久久| 中日韩精品一区二区三区| 亚洲日本免费电影| 天天干天天操天天拍| 五月天激情综合| 在线精品国精品国产尤物884a| 国内外成人在线| 91精品福利在线一区二区三区 | bt欧美亚洲午夜电影天堂| 日韩欧美一级二级三级久久久| 91在线小视频| 国产精品免费视频一区| 国产人妻大战黑人20p| 五月综合激情婷婷六月色窝| 91福利国产成人精品照片| 国产成人在线视频网址| 精品久久久久久久久久久久久久久 | 麻豆精品一区二区av白丝在线| 欧美系列一区二区| 成人午夜在线播放| 国产欧美日产一区| 日韩一区二区a片免费观看| 日韩精品色哟哟| 欧美日本不卡视频| 91亚洲精品久久久蜜桃| 国产精品国产自产拍在线| 国产精品情侣呻吟对白视频| 六月丁香综合在线视频| 日韩一区二区视频在线观看| 极品白嫩少妇无套内谢| 亚洲精品ww久久久久久p站| 精品国产视频在线观看| 福利一区在线观看| 中文字幕成人av| 91视频免费看片| 国产一区二区三区高清播放| 久久一区二区三区四区| 女人又爽又黄免费女仆| 麻豆精品久久精品色综合| 日韩精品中文字幕在线一区| 少妇精品一区二区| 日韩av电影天堂| 日韩美女视频一区二区在线观看| 久久午夜夜伦鲁鲁片| 日韩在线观看一区二区| 日韩一区二区在线看片| 亚洲熟妇一区二区三区| 美女国产一区二区三区| 精品久久久久久无| gv天堂gv无码男同在线观看| 国产精品一区专区| 亚洲国产岛国毛片在线| 日韩成人毛片视频| 97精品电影院| 亚洲二区视频在线| 欧美一区二区三区免费在线看| 性色av蜜臀av色欲av| 麻豆freexxxx性91精品| 久久久久青草大香线综合精品| 蜜桃av免费在线观看| 丁香桃色午夜亚洲一区二区三区| 中文字幕日韩一区| 欧美日韩精品一区二区天天拍小说| 少妇搡bbbb搡bbb搡打电话| 日韩高清不卡在线| 久久先锋资源网| 国产suv精品一区二区68| 北条麻妃国产九九精品视频| 亚洲综合男人的天堂| 欧美一级片在线看| 少妇愉情理伦三级| av资源网一区| 香蕉成人伊视频在线观看| 日韩精品一区二区三区中文精品| аⅴ天堂中文在线网| 成人动漫一区二区| 亚洲第一福利视频在线| 精品少妇一区二区三区在线视频| av片在线免费看| 91啪亚洲精品| 日本不卡不码高清免费观看| 国产亲近乱来精品视频| 在线一区二区三区| 日本xxx在线播放| 懂色av一区二区在线播放| 一区二区三区成人| 精品国产精品一区二区夜夜嗨| 69夜色精品国产69乱| 欧美成人精品一区二区综合免费| 久久国产视频网| 亚洲丝袜制服诱惑| 日韩你懂的电影在线观看| 久久久精品少妇| 在线观看成人动漫| 国产在线精品一区二区不卡了| 亚洲欧美aⅴ...| 日韩欧美一区二区视频| 亚洲国产美女视频| 在线免费播放av| 高清不卡一二三区| 日韩福利电影在线| 亚洲欧美一区二区在线观看| 日韩一级黄色片| 色拍拍在线精品视频8848| 亚洲人人夜夜澡人人爽| 成人h精品动漫一区二区三区| 日韩高清一区在线| 亚洲色图制服诱惑| 26uuu亚洲| 欧美日韩在线播放一区| 午夜黄色福利视频| 欧洲一级黄色片|