免费的av网站_手机免费观看av_男人操女人下面视频_无码人妻一区二区三区一_亚洲一区二区三区四区av_色婷婷在线视频观看_第四色在线视频_国产成人精品无码片区在线_国产一级二级在线观看_日本免费网站视频

《中國材料進展網(wǎng)》

您現(xiàn)在的位置:首 頁 >Industry News > 正文

Sequential delithiation behavior and structural rearrangement of a nanoscale ...

分享到:


發(fā)布時間:2020/6/29 16:39:59 瀏覽次數(shù):5494


Sequential delithiation behavior and structural rearrangement of a nanoscale composite-structured Li1.2Ni0.2Mn0.6O2 during charge–discharge cycles
Keiji Shimoda, Koji Yazawa, Toshiyuki Matsunaga, Miwa Murakami, Keisuke Yamanaka, Toshiaki Ohta, Eiichiro Matsubara, Zempachi Ogumi & Takeshi Abe
Scientific Reports volume 10, Article number: 10048 (2020) Cite this article

[Abstract]
Lithium- and manganese-rich layered oxides (LMRs) are promising positive electrode materials for next-generation rechargeable lithium-ion batteries. Herein, the structural evolution of Li1.2Ni0.2Mn0.6O2 during the initial charge–discharge cycle was examined using synchrotron-radiation X-ray diffraction, X-ray absorption spectroscopy, and nuclear magnetic resonance spectroscopy to elucidate the unique delithiation behavior. The pristine material contained a composite layered structure composed of Ni-free and Ni-doped Li2MnO3 and LiMO2 (M?=?Ni, Mn) nanoscale domains, and Li ions were sequentially and inhomogeneously extracted from the composite structure. Delithiation from the LiMO2 domain was observed in the potential slope region associated with the Ni2+/Ni4+ redox couple. Li ions were then extracted from the Li2MnO3 domain during the potential plateau and remained mostly in the Ni-doped Li2MnO3 domain at 4.8?V. In addition, structural transformation into a spinel-like phase was partly observed, which is associated with oxygen loss and cation migration within the Li2MnO3 domain. During Li intercalation, cation remigration and mixing resulted in a domainless layered structure with a chemical composition similar to that of LiNi0.25Mn0.75O2. After the structural activation, the Li ions were reversibly extracted from the newly formed domainless structure.

[Introduction]
The world is moving towards electrification as CO2 emission standards have resulted in a growing battery market. Rechargeable lithium ion batteries (LIBs) have been widely used as a power source for portable devices and currently the global market for electric vehicles (EVs) demands higher power, higher energy density, longer life, and lower cost batteries. A significant amount of effort has been dedicated to the development of improved battery materials, with recent studies investigating lithium- and manganese-rich layered oxides (LMRs), which are preferred candidate materials for the next-generation LIB positive electrodes due to their high reversible capacities of ≥200?mA?h g–1 at 2.0–4.8 V1,2,3,4,5,6,7,8,9,10. In contrast, several drawbacks have been reported including capacity fading and voltage decay during long-term charge–discharge cycles6,7,8,9,10,11,12,13,14. The structural factors resulting in these problems must be solved to develop stable and high power batteries.

LMRs exhibit a layered rock-salt structure commonly represented as Li[Li(1–2×)/3MxMn(2–x)/3]O2 (M?=?Ni, Co, etc.) in single-phase notation or as xLi2MnO3·(1–x)LiMO2 in composite notation. Based on single-phase notation, the crystal structure can be indexed with a space group of C2/m, where the structure is homogeneous and Li ions occupy the Li layer and part of the transition-metal (TM) layer with intralayer ordering between the Li and TM ions. In contrast, the composite notation can be expressed as a mixture of C2/m and R–3?m structures, where Li2MnO3 (alternatively expressed as Li[Li1/3Mn2/3]O2) and LiMO2 exhibit common d spacing. These two phases are dispersed as nanoscale domains over the entire structure15. Unfortunately, X-ray diffraction (XRD) studies provided no clear indication of which structural model appropriately represents the real structure. Many atomic column observations using advanced scanning transmission electron microscopy (STEM) have provided evidence of two structural domains in the composite structure16,17,18,19, while other reports showed a homogeneous atomic column, suggesting a single-phase structure20,21,22. Solid-state nuclear magnetic resonance (NMR) spectroscopy is sensitive to cation substitution in the first and second cation coordination shells, allowing the local structure to be examined at a length scale of <5?Å in diameter. Grey et al. reported the nonrandom cation distribution around Li ions in Li[Li(1–2×)/3MxMn(2–x)/3]O2 via 6Li magic-angle spinning (MAS) NMR analyses, implying a composite nature instead of homogeneous solid solution23,24,25.

......

For any more information, please log on https://www.nature.com/articles/s41598-020-66411-0


免费的av网站_手机免费观看av_男人操女人下面视频_无码人妻一区二区三区一_亚洲一区二区三区四区av_色婷婷在线视频观看_第四色在线视频_国产成人精品无码片区在线_国产一级二级在线观看_日本免费网站视频
免费中文字幕在线| 亚洲av鲁丝一区二区三区| 91麻豆精品国产91久久久更新时间 | 免费a级黄色片| 欧美人妖巨大在线| 欧美一区二区三区视频| 久久精品国产久精国产爱| 中文字幕乱码在线人视频| 成人在线观看高清| 国产精品人成在线观看免费| 韩国av一区二区三区| 国产肥白大熟妇bbbb视频| 欧美大片国产精品| 青青草成人在线观看| 日韩免费高清一区二区| 欧美一区中文字幕| 午夜电影久久久| 男人的天堂影院| 777午夜精品视频在线播放| 亚洲一区av在线| 最新中文字幕日本| 欧美日韩大陆一区二区| 香蕉乱码成人久久天堂爱免费| 超碰在线国产97| 成人精品国产免费网站| 久久精品国产亚洲AV成人婷婷| 精品国产麻豆免费人成网站| 紧身裙女教师波多野结衣| 怡红院一区二区| 欧美三级电影在线看| 一区二区视频在线看| 黄页网站在线看| 91.成人天堂一区| 日韩电影在线观看网站| 人妻熟女aⅴ一区二区三区汇编| 精品久久免费看| 国产制服丝袜一区| 99re6热在线精品视频| 国产精品久久久久久久久免费相片| 粉嫩高潮美女一区二区三区| 91福利视频在线| 亚洲成人av电影在线| 亚洲精品成人无码熟妇在线| 国产片一区二区三区| 99麻豆久久久国产精品免费优播| 欧美日韩国产一二三| 人人精品人人爱| 亚洲色图100p| 亚洲一区中文日韩| 麻豆av免费观看| 国产精品蜜臀在线观看| 潘金莲一级淫片aaaaa| 欧美一区二区三区在线视频| 国模一区二区三区白浆| 91成人福利视频| 午夜天堂影视香蕉久久| 亚欧精品视频一区二区三区| 亚洲免费在线观看| 成人免费看aa片| 国产精品区一区二区三区| 欧美老女人bb| 国产亚洲欧美色| 久久久久久国产精品日本| 日韩视频一区二区三区在线播放| 国产成人精品免费在线| 欧美裸体bbwbbwbbw| 国内精品伊人久久久久av影院 | 国产精品久久影院| 亚洲美女高潮久久久| 欧美mv和日韩mv的网站| 成人高清免费在线播放| 日韩视频在线永久播放| www.亚洲人| 欧美va在线播放| 91亚洲精品久久久蜜桃网站| 日韩视频免费观看高清完整版在线观看 | 亚洲综合无码一区二区| 中文字幕免费高清| 一级女性全黄久久生活片免费| 免费网站在线高清观看| 一区二区三区在线观看国产| 色欲AV无码精品一区二区久久| 可以看的av网址| 午夜视频一区二区| 无码人中文字幕| 亚洲一区在线看| 91视频免费看片| 婷婷综合久久一区二区三区| 性欧美videos| 日本sm残虐另类| 欧美视频一区二区三区四区 | 日本午夜精品视频在线观看| www青青草原| 国产中文字幕一区| 日韩一区二区三区视频在线| 99久久久精品| 日本一区二区电影| 国产二级一片内射视频播放| 亚洲色图一区二区| 亚洲色图27p| 日本在线不卡视频| 欧美亚一区二区| 国产福利视频一区二区三区| 日韩一级免费一区| 性色av浪潮av| 亚洲欧洲日韩av| 懂色av粉嫩av浪潮av| 日韩二区在线观看| 一区二区三区毛片| 国产色婷婷亚洲99精品小说| 免费在线观看日韩av| 中文字幕不卡在线| www..com.cn蕾丝视频在线观看免费版 | yourporn久久国产精品| 久久久久久综合| 国产精品无码午夜福利| 五月天亚洲精品| 欧美日本一区二区三区| 91香蕉视频污| 亚洲视频免费看| 色综合久久中文综合久久97| 成人性生交大片免费看在线播放| 久久久久久久久久久黄色| 国产无人区一区二区三区| 黄色国产在线观看| 婷婷激情综合网| 欧美精品色一区二区三区| 动漫av在线免费观看| 一级精品视频在线观看宜春院| 91福利精品视频| 四虎国产精品永久免费观看视频| 亚洲欧美偷拍另类a∨色屁股| 欧美激情图片小说| 丁香天五香天堂综合| 中文字幕在线免费不卡| 久久国产精品国语对白| 懂色av一区二区三区免费看| 国产精品国产三级国产aⅴ原创| 在线观看美女av| 岛国av在线一区| 亚洲日本一区二区三区| 在线看国产一区| 日韩精品――色哟哟| 亚洲午夜成aⅴ人片| 欧美高清视频www夜色资源网| 人妻体内射精一区二区三区| 日韩高清在线一区| 精品日韩一区二区| 制服 丝袜 综合 日韩 欧美| 韩国v欧美v亚洲v日本v| 中文字幕的久久| 色哟哟一区二区在线观看| 99久久99久久精品免费看蜜桃| 依依成人综合视频| 欧美精品日韩精品| 扒开jk护士狂揉免费| 国产综合久久久久久鬼色| 国产精品久久777777| 在线视频欧美精品| 艳妇乳肉豪妇荡乳xxx| 麻豆传媒一区二区三区| 国产农村妇女毛片精品久久麻豆| 啪啪一区二区三区| 99r国产精品| 丝袜美腿亚洲色图| 久久久精品国产免费观看同学| 天天天天天天天天操| 中文字幕欧美视频| 青青草视频一区| 欧美激情一区在线| 欧美亚洲动漫精品| 好吊视频在线观看| 成人看片黄a免费看在线| 亚洲一区在线免费观看| 欧美成va人片在线观看| 日韩三级久久久| 99久久综合网| 精品一区二区三区av| 国产精品国模大尺度视频| 欧美日韩一级片在线观看| 国产熟妇久久777777| 成人免费视频播放| 午夜精品久久久久久久99水蜜桃| 欧美成人激情免费网| 91高清免费观看| 精品中文字幕在线播放| 国产xxx精品视频大全| 亚洲五码中文字幕| 潘金莲一级黄色片| 超碰人人cao| 久久er精品视频| 亚洲精品免费电影| 久久综合久久久久88| 色综合av在线| 少妇久久久久久久久久| 91在线国产福利| 韩国精品一区二区| 亚洲h在线观看| 国产精品女同互慰在线看| 欧美一区二区精美|