免费的av网站_手机免费观看av_男人操女人下面视频_无码人妻一区二区三区一_亚洲一区二区三区四区av_色婷婷在线视频观看_第四色在线视频_国产成人精品无码片区在线_国产一级二级在线观看_日本免费网站视频

Nano-engineering the material structure of preferentially oriented nano-graphitic carbon for making high-performance electrochemical micro-sensors
Edoardo Cuniberto, Abdullah Alharbi, Ting Wu, Zhujun Huang, Kasra Sardashti, Kae-Dyi You, Kim Kisslinger, Takashi Taniguchi, Kenji Watanabe, Roozbeh Kiani & Davood Shahrjerdi
Scientific Reports volume 10, Article number: 9444 (2020) Cite this article

[Abstract]
Direct synthesis of thin-film carbon nanomaterials on oxide-coated silicon substrates provides a viable pathway for building a dense array of miniaturized (micron-scale) electrochemical sensors with high performance. However, material synthesis generally involves many parameters, making material engineering based on trial and error highly inefficient. Here, we report a two-pronged strategy for producing engineered thin-film carbon nanomaterials that have a nano-graphitic structure. First, we introduce a variant of the metal-induced graphitization technique that generates micron-scale islands of nano-graphitic carbon materials directly on oxide-coated silicon substrates. A novel feature of our material synthesis is that, through substrate engineering, the orientation of graphitic planes within the film aligns preferentially with the silicon substrate. This feature allows us to use the Raman spectroscopy for quantifying structural properties of the sensor surface, where the electrochemical processes occur. Second, we find phenomenological models for predicting the amplitudes of the redox current and the sensor capacitance from the material structure, quantified by Raman. Our results indicate that the key to achieving high-performance micro-sensors from nano-graphitic carbon is to increase both the density of point defects and the size of the graphitic crystallites. Our study offers a viable strategy for building planar electrochemical micro-sensors with high-performance.


[Introduction]
Carbon materials are widely used in building electrochemical sensors for detecting biomolecules because of their favorable electrochemical activity, bio-compatibility, rich surface chemistry, and strong resistance to bio-fouling. In biomolecule sensing applications, it is desirable to implement a large-scale sensing system comprising many small (micron-sized) carbon electrodes with high packing density. However, such large-scale systems are challenging to implement. In particular, existing implementations are limited mainly to one or a handful of carbon electrodes1,2,3,4,5.


Significant progress has been made on the development of single-electrode micro-sensors from bulk carbon materials, such as carbon fibers6,7 and nanotube yarns8,9. However, the large cylindrical form of these materials (>5 μm diameter) limits them to the fabrication of single or small-array micro-sensors. Importantly, while past research on this topic has evaluated a wide variety of carbon-based materials for boosting the sensor performance, the search for an optimal carbon material is still ongoing10,11,12,13. It is generally accepted that, in a carbon material, defects and functional groups influence the sensitivity and the charging current of carbon-based electrochemical sensors. However, from a fundamental standpoint, a detailed understanding of the underlying electrochemical mechanisms that control these sensor characteristics, i.e. electron transfer rate and electrode capacitance, is still a subject of research14,15,16,17.


Due to the above-mentioned limitations of bulk carbon materials in producing a dense sensor array, one promising strategy is to form thin-film carbon materials on dielectric substrates using standard microfabrication techniques. This generally involves converting lithographically-defined polymeric islands into pure sp2 hybridized carbon through a high-temperature thermal treatment (a process known as pyrolysis)18,19,20,21,22,23,24,25. Of various substrates, dielectric-coated silicon is an attractive choice because of its low cost, its commercial availability in large dimensions (up to 300?mm diameter), and its compatibility with standard micro-fabrication techniques. The latter feature is particularly useful for making functional sensor carriers from silicon substrates, e.g., by shaping silicon into narrow and flexible shafts for applications in neural interfacing. However, the thermal stability of silicon substrates limits the production temperature of these microfabricated thin-film carbon materials to below 1100?°C. Due to this temperature limit, the resulting material has a fully disordered sp2 structure with slow electron transfer kinetics. Hence, even though this microfabrication process provides a simple method for making thin-film pyrolyzed carbon materials, the resulting sensors have poor sensing characteristics18,26.

......

For any more information, please log on https://www.nature.com/articles/s41598-020-66408-9

免费的av网站_手机免费观看av_男人操女人下面视频_无码人妻一区二区三区一_亚洲一区二区三区四区av_色婷婷在线视频观看_第四色在线视频_国产成人精品无码片区在线_国产一级二级在线观看_日本免费网站视频
国产高清亚洲一区| 免费一级做a爰片久久毛片潮| 欧美丰满熟妇bbbbbb| 精品国产网站在线观看| 亚洲成人三级小说| 99久久99久久久精品齐齐| 黑人狂躁日本娇小| 国产亚洲精品福利| 国产资源精品在线观看| 精品成人无码一区二区三区| 欧美va亚洲va香蕉在线| 美女性感视频久久| 久久久久亚洲av无码专区桃色| 欧美一区二区三区播放老司机| 天堂影院一区二区| 日b视频在线观看| 91精品麻豆日日躁夜夜躁| 午夜精品久久久久久久蜜桃app| 91色综合久久久久婷婷| 欧美网站大全在线观看| 亚洲一区二区三区视频在线播放 | 欧美日韩你懂得| 一级日本不卡的影视| 亚洲 自拍 另类 欧美 丝袜| 欧美日韩在线观看一区二区| 香港成人在线视频| 黄色录像a级片| 精品日韩99亚洲| 韩国精品主播一区二区在线观看| 日韩欧美黄色网址| 中文字幕欧美区| 99久久精品国产观看| 欧美丝袜自拍制服另类| 伊人婷婷欧美激情| 成人欧美精品一区二区| 欧美一卡二卡在线观看| 麻豆专区一区二区三区四区五区| 国产真人做爰视频免费| 欧美国产禁国产网站cc| av色综合久久天堂av综合| 欧美色涩在线第一页| 日韩福利电影在线观看| 自拍偷拍视频亚洲| 中文字幕高清不卡| 91在线高清观看| 正在播放一区二区| 久久66热re国产| 日本黄色片免费观看| 一区二区三区成人| 成人手机在线免费视频| 国产丝袜欧美中文另类| bt7086福利一区国产| 欧美群妇大交群中文字幕| 麻豆成人av在线| 成人性生活毛片| 午夜国产精品一区| a级黄色免费视频| 亚洲激情图片一区| 国产女主播喷水高潮网红在线| 欧美—级在线免费片| 69久久精品无码一区二区| 日韩精品最新网址| 成人性色生活片免费看爆迷你毛片| 欧美三级日韩三级| 韩国一区二区三区| 欧美色图激情小说| 久草热8精品视频在线观看| 国产这里有精品| 免费欧美在线视频| 色综合久久中文字幕综合网 | 亚洲一区在线电影| 亚洲av熟女国产一区二区性色| 亚洲青青青在线视频| 成人午夜剧场视频网站| 亚洲视频在线观看一区| a级片在线观看| 亚洲黄色免费电影| 亚洲天堂av中文字幕| 亚洲电影在线播放| 婷婷社区五月天| 人人狠狠综合久久亚洲| www.色小姐com| 久久精品国产久精国产| 欧美少妇bbb| 国产精品一二三| 日韩一区二区电影| 91视频www| 欧美国产欧美亚州国产日韩mv天天看完整| 在线xxxxx| 亚洲免费av在线| 亚洲激情图片网| 日本不卡的三区四区五区| 91黄视频在线观看| 国产精品资源在线看| 日韩午夜在线播放| 亚洲丝袜在线观看| 国产精品久久久久久久久免费丝袜| 亚洲第一页av| 亚洲国产欧美日韩另类综合| 男人与禽猛交狂配| 国产一区欧美日韩| 欧美一级欧美三级| 中文字幕乱妇无码av在线| 国产精品视频在线看| 少妇精品无码一区二区免费视频| 香蕉久久一区二区不卡无毒影院| 色婷婷亚洲婷婷| 懂色一区二区三区免费观看| 精品成人免费观看| 国产制服丝袜在线| 亚洲综合在线第一页| 国产成人无码aa精品一区| 国产成人精品免费网站| 亚洲精品在线观看视频| av网页在线观看| 亚洲福利视频导航| 欧美午夜精品久久久| 99久久免费视频.com| 中文字幕亚洲区| 中文字幕电影av| 国产成人免费在线观看| 国产亚洲欧美一级| 美国黑人一级大黄| 久久超碰97中文字幕| 精品美女在线观看| 成人h动漫精品一区| 丝袜脚交一区二区| 91精品国产综合久久精品图片| 日本xxxx免费| 亚洲一区二区视频| 欧美日韩一区二区在线观看| 黑人无套内谢中国美女| 伊人夜夜躁av伊人久久| 在线欧美日韩精品| 91女厕偷拍女厕偷拍高清| 日韩伦理av电影| 中文字幕在线2021| 成人国产亚洲欧美成人综合网| 国产精品大尺度| 日本韩国欧美一区| 免费看91视频| 香蕉影视欧美成人| 欧美一级精品在线| 亚洲国产无码精品| 久久99深爱久久99精品| 久久久久88色偷偷免费| 一本一本久久a久久| 国产69精品久久777的优势| 国产精品嫩草影院com| 色综合久久综合中文综合网| 男插女视频网站| 偷拍日韩校园综合在线| 精品日韩99亚洲| 青青青视频在线免费观看| 国产成人免费视频精品含羞草妖精| 国产精品久久久久天堂| 在线一区二区视频| 午夜剧场免费看| 裸体一区二区三区| 中文字幕av一区二区三区高 | 日韩精品1区2区3区| 精品国产一区二区三区av性色 | 色爱区综合激月婷婷| 麻豆短视频在线观看| 手机精品视频在线观看| 久久天堂av综合合色蜜桃网| 日韩黄色免费观看| 亚洲v在线观看| 精品一区二区三区香蕉蜜桃| 中文字幕免费一区| 欧美手机在线视频| 懂色av粉嫩av蜜乳av| 国产精品1区2区3区| 亚洲精品大片www| 日韩欧美国产高清| 久艹在线观看视频| 精品人妻一区二区免费| 久久福利视频一区二区| 国产精品激情偷乱一区二区∴| 欧美视频一区二区三区在线观看| 最新中文字幕视频| 不卡视频在线观看| 日本午夜精品视频在线观看 | 国产精品91av| 激情综合五月婷婷| 亚洲激情图片小说视频| 欧美精品一区二区精品网| 色哟哟在线观看一区二区三区| 国产中文字幕一区二区| 成a人片国产精品| 男人的j进女人的j一区| 国产精品入口麻豆原神| 欧美老女人在线| 极品美妇后花庭翘臀娇吟小说| 午夜影院福利社| 国产福利91精品| 日本不卡高清视频| 一区二区视频免费在线观看| 久久只精品国产| 欧美人牲a欧美精品|