免费的av网站_手机免费观看av_男人操女人下面视频_无码人妻一区二区三区一_亚洲一区二区三区四区av_色婷婷在线视频观看_第四色在线视频_国产成人精品无码片区在线_国产一级二级在线观看_日本免费网站视频

Facile Tuning of the Mechanical Properties of a Biocompatible Soft Material

Abstract
Herein, we introduce a method to locally modify the mechanical properties of a soft, biocompatible material through the exploitation of the effects induced by the presence of a local temperature gradient. In our hypotheses, this induces a concentration gradient in an aqueous sodium alginate solution containing calcium carbonate particles confined within a microfluidic channel. The concentration gradient is then fixed by forming a stable calcium alginate hydrogel. The process responsible for the hydrogel formation is initiated by diffusing an acidic oil solution through a permeable membrane in a 2-layer microfluidic device, thus reducing the pH and freeing calcium ions. We characterize the gradient of mechanical properties using atomic force microscopy nanoindentation measurements for a variety of material compositions and thermal conditions. Significantly, our novel approach enables the creation of steep gradients in mechanical properties (typically between 10–100 kPa/mm) on small scales, which will be of significant use in a range of tissue engineering and cell mechanosensing studies.


Introduction
Gradients of mechanical properties are found in innumerable natural systems and phenomena and at all length scales1,2,3. The behaviour of cells cultivated on substrates of different stiffness have been widely studied in recent years, unveiling how migration4,5,6, proliferation6,7, adhesion5,8 and also differentiation7,9,10 are dependent on the characteristics of the material upon which the cells proliferate. To date most of these studies have considered materials of defined but uniform rigidity, with few assessing biocompatible materials possessing a rigidity gradient11,12,13. This is relevant, for example, for the osteotendinous insertion, the tissue formed by differentiations of Mesenchymal Stem Cells (MSCs) that connects the soft tendinous and the rigid osseous tissue. This is characterised by a gradient of stiffness responsible for the differentiation of the stem cells14. In this respect, control over the Young’s modulus of such materials is extremely limited. Herein, we show for the first time the creation, tuning and control of mechanical property in biocompatible materials by inducing a concentration gradient through the application of thermophoretic forces. Significantly, the ability to impose and control temperature gradients across a microfluidic channel allows facile manipulation of elasticity gradients in the final material.

Two major challenges faced when generating rigidity gradients relate to the availability of polymers that permit the formation of the desired gradient in mechanical property and the accessibility of formation methodologies. Unsurprisingly, both issues are closely related, with biocompatibility requirements further complicating the undertaking.

Traditionally, the rigidity of a gel can be tuned by controlling the degree of crosslinking or the initial monomer concentration. For example, the use of an optical mask containing a spatial gradient in transparency can be used to control light intensity during the photo-polymerization process12. Alternatively, a microfluidic gradient generator15 and a photo-polymerization step can be used to “fix” a desired concentration gradient within a material. Nevertheless, the main limitations of such techniques relate to the choice of the substrate material, which is restricted to UV curable polymers, and reduced control over the magnitude of the rigidity gradient.

To address the aforementioned limitations, we herein exploit the possibility to accurately impose and control a temperature gradient within a microfluidic device to create a novel class of biocompatible material presenting a rigidity gradient, based on crosslinked calcium alginate constrained within microfluidic geometries. In the presence of a temperature gradient, the solutes dispersed in solution are affected by thermophoresis which induces the formation of a concentration gradient. Here we suggest a mechanism based on the combined effect of the thermophoretic drift of each component dispersed in the aqueous solution of sodium alginate to explain the obtained results. Significantly, since thermophoresis can be applied to any kind of solute dispersed in solution, the basic method can be easily extended to any polymer or hydrogel undergoing a polymerization or sol-gel process. The main advantage of our proposed approach is the fact that we can effectively decouple the control over the local stiffness of the material from the polymerisation process. By exploiting thermophoresis, we can induce a gradient of mechanical properties that is independent from the choice of the material. For example, the concentration gradient can be gently tuned by thermophoresis in a delicate biocompatible hydrogel using only minute temperature differences that do not alter the overall properties of the material and then, independently, the material can be crosslinked.

Thermophoresis is a physical phenomenon discovered over one century ago16,17. Briefly, in the presence of a temperature gradient, a solute dispersed in solution will migrate along that temperature gradient and accumulate either on the ‘cold’ or the ‘hot’ side depending on the specific solute-solvent interactions18, average temperature19, solute size20,21 or type of dispersed electrolyte22. At steady-state, the mass flux, Jm, is zero and the concentration gradient is counterbalanced by the temperature gradient (Eq. 1), where the gradient is assumed to be along the z-axis, i.e.

$$\begin{array}{ccc}{J}_{m} & = & \rho [D\frac{dc}{dz}-c(1-c){D}_{T}\frac{dT}{dz}]\\ {J}_{m} & = & 0\to \frac{dc}{dz}=-\,c(1-c){S}_{T}\frac{dT}{dz}\end{array}$$ (1)
here, ρ is the density of the solute, c is the concentration, D is the diffusion coefficient, DT is the thermophoretic mobility and ST the so called Soret coefficient, equal to DT/D. In simple terms, the Soret coefficient is positive when solute accumulates on the low temperature side and negative when accumulation occurs on the high-temperature side.

The concentration gradient induced by thermophoresis is proportional to the temperature gradient and, as a consequence, at small scales typical of microfluidic devices, only a very limited temperature difference is required over the biocompatible material to generate the required mechanical properties gradient, and no other material property is influenced by this.

For any more information, please log on  https://www.nature.com/articles/s41598-019-43579-8

免费的av网站_手机免费观看av_男人操女人下面视频_无码人妻一区二区三区一_亚洲一区二区三区四区av_色婷婷在线视频观看_第四色在线视频_国产成人精品无码片区在线_国产一级二级在线观看_日本免费网站视频
丰满少妇xbxb毛片日本| 精品对白一区国产伦| 亚洲欧美色图小说| 丰满亚洲少妇av| 人妻无码一区二区三区免费| 久久综合九色综合久久久精品综合 | 欧美高清在线一区| 精品亚洲国产成人av制服丝袜 | 欧美精品乱码久久久久久| 亚洲一区视频在线观看视频| 91在线你懂得| 欧美唯美清纯偷拍| 亚洲尤物在线视频观看| 亚洲区 欧美区| 欧美伦理电影网| 午夜精品久久久久久久久久| 99热超碰在线| 欧美一区二区大片| 老司机精品视频一区二区三区| 一级黄色片大全| 精品国产免费一区二区三区四区 | 国产高清在线精品| 色老板免费视频| 国产精品久久夜| av成人动漫在线观看| 91电影在线观看| 亚洲图片一区二区| 精品人妻一区二区免费视频| 欧美大片国产精品| 国内外成人在线视频| 日韩在线视频免费看| 国产精品视频你懂的| 不卡一区二区三区四区| 欧洲精品一区二区| 一个色综合av| 欲求不满的岳中文字幕| 精品国产免费视频| 国产夫妻精品视频| 91久久精品国产91性色tv| 亚洲精品国产品国语在线app| 91论坛在线播放| 欧美久久久久免费| 久久精品国产精品青草| 1024手机在线观看你懂的| 中文字幕的久久| gogogo免费视频观看亚洲一| 欧美在线你懂的| 午夜精品免费在线| 白白色免费视频| 中文字幕免费一区| gogogo免费视频观看亚洲一| 欧美三级视频在线观看| 麻豆国产精品官网| 国产黄色录像视频| 亚洲精品视频在线| 精品人妻互换一区二区三区| 国产女同性恋一区二区| 91玉足脚交白嫩脚丫在线播放| 欧美人妖巨大在线| 九九热在线视频观看这里只有精品| 黄色精品视频在线观看| 亚洲伊人伊色伊影伊综合网| 在线不卡av电影| 亚洲少妇屁股交4| 自拍视频一区二区| 国产精品美女久久久久久久| 免费看毛片的网站| 中文字幕欧美日韩一区| 污污免费在线观看| 中文字幕乱码亚洲精品一区| 国产精品久久久久久亚洲av| 国产亚洲精品aa| av在线天堂网| 国产女人18毛片水真多成人如厕 | 日韩专区在线视频| 黄色录像一级片| 日韩高清一区在线| 色诱视频网站一区| 精品一区二区免费在线观看| 欧美午夜精品一区二区三区| 精品一区二区三区的国产在线播放 | 99re久久精品国产| 亚洲视频资源在线| 小早川怜子久久精品中文字幕| 亚洲黄色免费网站| 潮喷失禁大喷水aⅴ无码| 午夜精品影院在线观看| www青青草原| 精品在线你懂的| 欧美丰满一区二区免费视频 | 99成人在线观看| 免费高清在线视频一区·| 日本道免费精品一区二区三区| 韩国女主播成人在线观看| 欧美肥妇bbw| 99国产精品国产精品久久| 国产日韩欧美一区二区三区乱码| 中文字幕a在线观看| 亚洲欧洲综合另类| 女同久久另类69精品国产| 免费高清在线视频一区·| 欧美日本国产视频| 99精品欧美一区二区三区综合在线| 久久精品男人天堂av| 97伦伦午夜电影理伦片| 亚洲成人免费在线| 欧美这里有精品| 成人av午夜电影| 国产精品视频免费| av片在线免费看| 国内精品自线一区二区三区视频| 欧美一级二级三级乱码| 精品久久久久久无码人妻| 依依成人精品视频| 色女孩综合影院| 成人一级片在线观看| 国产视频一区在线观看| 91成年人网站| 老色鬼精品视频在线观看播放| 日韩视频在线一区二区| 秘密基地免费观看完整版中文| 亚洲精品免费在线观看| 色婷婷精品大在线视频| 成人国产精品免费观看动漫| 国产嫩草影院久久久久| 激情五月激情综合| 国产精品一二三四| 日本一区二区三区国色天香| 911国产在线| 国产成人aaaa| 国产精品国产三级国产aⅴ原创 | 久久精品一级爱片| 91视频免费看片| 国产福利精品导航| 国产精品天天看| 高h视频免费观看| 99热这里都是精品| 一区二区三区精密机械公司| 欧美少妇xxx| 国产51自产区| 日韩影院在线观看| 欧美成人女星排名| 懂色av粉嫩av浪潮av| 国产成人欧美日韩在线电影| 国产精品久久久久婷婷| 色婷婷精品久久二区二区蜜臀av| 91麻豆.com| 五月天一区二区三区| 日韩女优毛片在线| 久久久免费看片| 大桥未久av一区二区三区中文| 亚洲视频每日更新| 欧美日韩国产片| 精品人妻一区二区三区日产乱码卜| 奇米影视一区二区三区小说| 欧美精品一区二区三区在线播放 | 亚洲精选免费视频| 欧美电影影音先锋| a天堂中文字幕| 国产成人在线网站| 亚洲精品国产第一综合99久久 | 91黄色免费观看| 丰满岳乱妇一区二区| 久久99国产精品久久99果冻传媒| 国产清纯白嫩初高生在线观看91| 国产波霸爆乳一区二区| 李丽珍裸体午夜理伦片| 免费成人美女在线观看.| 久久精品夜夜夜夜久久| 在线免费观看视频一区| 欧美成人三级伦在线观看| 国产在线精品一区二区不卡了 | 欧美性猛交xxxx乱大交退制版| 亚洲の无码国产の无码步美| 国产麻豆午夜三级精品| 亚洲精品免费看| 日韩视频在线一区二区| 欧美爱爱免费视频| 亚洲午夜久久久久久久久| 蜜桃久久精品一区二区| 国产精品久久久久久久午夜片| 欧美日韩精品二区第二页| 国产又粗又猛又爽又黄av | 91高清免费看| 捆绑裸体绳奴bdsm亚洲| 国产很黄免费观看久久| 亚洲精品日韩一| 精品盗摄一区二区三区| 91久久国产综合久久| 性少妇bbw张开| 91网站在线播放| 韩国一区二区三区| 亚洲一区二区三区爽爽爽爽爽| 国产亚洲欧洲一区高清在线观看| 欧美日韩在线播放一区| a级黄色免费视频| 91九色蝌蚪porny| 成人国产精品视频| 久久www免费人成看片高清| 一区二区国产视频|