免费的av网站_手机免费观看av_男人操女人下面视频_无码人妻一区二区三区一_亚洲一区二区三区四区av_色婷婷在线视频观看_第四色在线视频_国产成人精品无码片区在线_国产一级二级在线观看_日本免费网站视频

Text mining facilitates materials discovery

Computer algorithms can be used to analyse text to find semantic relationships between words without human input. This method has now been adopted to identify unreported properties of materials in scientific papers.


The total number of materials that can potentially be made — sometimes referred to as materials space — is vast, because there are countless combinations of components and structures from which materials can be fabricated. The accumulation of experimental data that represent pockets of this space has created a foundation for the emerging field of materials informatics, which integrates high-throughput experiments, computations and data-driven methods into a tight feedback loop that enables rational materials design. Writing in Nature, Tshitoyan et al.1 report that knowledge of materials science ‘hidden’ in the text of published papers can be mined effectively by computers without any guidance from humans.


The discovery of materials that have a particular set of properties has always been a serendipitous process requiring extensive experimentation — a combination of craft and science practised by knowledgeable artisans. However, this trial-and-error approach is expensive and inefficient. There is therefore great interest in using machine learning to make materials discovery more efficient.

Currently, most machine-learning applications aim to find an empirical function that maps input data (for example, parameters that define a material’s composition) to a known output (such as measured physical or electronic properties). The empirical function can then be used to predict the property of interest for new input data. This approach is said to be supervised, because the process of learning from the training data is akin to a teacher supervising students by selecting the subjects and facts needed for a particular lesson. A contrasting approach involves using only input data, which have no obvious connection to a specific output. In this case, the goal is to identify intrinsic patterns in the data, which are then used to classify those data. Such an approach is called unsupervised learning, because there are no a priori correct answers and there is no teacher.

Tshitoyan and colleagues collected 3.3 million abstracts from papers published in the fields of materials science, physics and chemistry between 1922 and 2018. These abstracts were processed and curated, for example to remove text that wasn’t in English and to exclude abstracts that had unsuitable metadata types, such as ‘Erratum’ or ‘Memorial’. This left 1.5 million abstracts, which were written using a vocabulary of about 500,000 words.

The authors then analysed the curated text using an unsupervised machine-learning algorithm known as Word2vec2, which was developed to enable computers to process text and natural language. Word2vec takes a large body of text and passes it through an artificial neural network (a type of machine-learning algorithm) to map each word in the vocabulary to a numeric vector, each of which typically has several hundred dimensions. The resulting word vectors are called embeddings, and are used to position each word, represented as a data point, in a multidimensional space that represents the vocabulary. Words that share common meanings form clusters within that space. Word2vec can therefore make accurate estimates about the meaning of words, or about the functional relationships between them, on the basis of the patterns of usage of the words in the original text. Importantly, these meanings and relationships are not explicitly encoded by humans, but are learnt in an unsupervised way from the analysed text.


The researchers found that the obtained word embeddings for materials-science terms produced word associations that reflect rules of chemistry, even though the algorithm did not use any specific labels to identify or interpret chemical concepts. When combined using various mathematical operations, the embeddings identified word associations that corresponded to concepts such as ‘chemical elements’, ‘oxides’, ‘crystal structures’, and so on. The embeddings also identified clusters of known materials (Fig. 1) corresponding to categorizations that could be used to classify new materials made in the future.


 For any more information, please log on https://www.nature.com/articles/d41586-019-01978-x
免费的av网站_手机免费观看av_男人操女人下面视频_无码人妻一区二区三区一_亚洲一区二区三区四区av_色婷婷在线视频观看_第四色在线视频_国产成人精品无码片区在线_国产一级二级在线观看_日本免费网站视频
亚洲大片在线观看| 天堂网av2018| 91精品国产综合久久福利软件| 最新不卡av在线| 国产成人亚洲综合a∨婷婷| 日韩免费成人av| 久久人人爽爽爽人久久久| 蜜桃91丨九色丨蝌蚪91桃色| 日本xxx在线播放| 日韩三级在线免费观看| 日日夜夜精品免费视频| 久久久久9999| 日韩欧美美女一区二区三区| 日本亚洲免费观看| 丝袜美腿中文字幕| 日韩激情在线观看| 亚洲视频天天射| 色www精品视频在线观看| 136国产福利精品导航| 成人福利视频在线| 色婷婷久久一区二区三区麻豆| 中文字幕一区免费在线观看| 国产精品自拍在线| 国产suv一区二区三区| 亚洲欧美日韩国产另类专区 | 国语对白在线播放| 亚洲欧洲色图综合| 91同城在线观看| 欧美日韩精品电影| 日韩av电影一区| 日韩丰满少妇无码内射| 国产视频一区在线播放| 成人精品视频.| 欧美亚洲尤物久久| 日日噜噜夜夜狠狠视频欧美人| 少妇精品一区二区三区| 久久久久九九视频| 成人精品小蝌蚪| 欧美色图在线观看| 日本午夜一区二区| 欧美巨胸大乳hitomi| 成人免费在线视频观看| 国产免费无码一区二区| 精品国产一区二区三区不卡 | 精品国产一区a| 国产激情一区二区三区| 91成人免费在线| 婷婷成人激情在线网| 香蕉视频久久久| 中文字幕一区二区三区不卡| 中国特级黄色大片| 久久综合九色综合97婷婷| 成人视屏免费看| 欧美精品少妇一区二区三区| 精品一区二区三区免费观看 | 久久99精品国产.久久久久| 可以免费看av的网址| 夜夜操天天操亚洲| 亚洲精品国产精品国自产网站| 中文字幕日本不卡| 亚洲欧美区自拍先锋| 白丝女仆被免费网站| 中文字幕一区二区视频| 欧美 变态 另类 人妖| 中文字幕精品一区二区三区精品| 亚洲欧洲日韩综合| 久久久国产午夜精品| 性生活在线视频| 久久久久久久精| 涩视频在线观看| 欧美国产日本视频| 国产伦精品一区三区精东| 国产精品日韩精品欧美在线| 国产成人av无码精品| 国产精品高潮呻吟| 性欧美丰满熟妇xxxx性仙踪林| 中文字幕中文字幕一区| 欧类av怡春院| 亚洲欧美视频一区| 亚洲一二三精品| 日日夜夜免费精品| 91九色最新地址| 国产精一区二区三区| 欧美一区二区高清| 91亚洲大成网污www| 久久久久国产精品麻豆| 亚洲av成人片无码| 日韩伦理av电影| 日本精品久久久久中文| 日韩电影在线免费| 欧美少妇xxx| 成人免费高清在线| 久久精品免费在线观看| 亚洲制服丝袜在线播放| 一区二区在线观看不卡| frxxee中国xxx麻豆hd| 久久精品国产精品亚洲红杏| 欧美乱熟臀69xxxxxx| 成人av在线播放网址| 国产日韩欧美高清在线| 青青草福利视频| 五月天一区二区三区| 日本电影欧美片| 粉嫩一区二区三区性色av| 久久婷婷成人综合色| 波多野结衣视频播放| 亚洲主播在线观看| 一本大道久久精品懂色aⅴ| 国产精品一区不卡| 久久久不卡影院| 加勒比综合在线| 日韩国产欧美在线播放| 欧美福利电影网| 又大又长粗又爽又黄少妇视频| 亚洲另类春色国产| 中文字幕影音先锋| 成人午夜大片免费观看| 亚洲国产成人自拍| 中文乱码字幕高清一区二区| 国内精品国产三级国产a久久| 日韩精品一区二区三区swag| 午夜视频在线观看国产| 亚洲gay无套男同| 在线播放欧美女士性生活| 国产情侣久久久久aⅴ免费| 亚洲综合无码一区二区| 欧美亚洲一区二区在线观看| 99久久综合精品| 亚洲精品视频自拍| 在线观看一区二区视频| 人妻巨大乳一二三区| 亚洲精品乱码久久久久久黑人| 日本高清不卡一区| 日本少妇激三级做爰在线| 一区二区免费看| 欧美群妇大交群中文字幕| 野战少妇38p| 天堂在线一区二区| 日韩你懂的电影在线观看| 少妇久久久久久久久久| 激情偷乱视频一区二区三区| 国产三级一区二区三区| 少妇的滋味中文字幕bd| 粉嫩嫩av羞羞动漫久久久| 自拍偷拍欧美激情| 欧美视频日韩视频| 黄色av网址在线观看| 久久国产精品色| 国产欧美视频一区二区| www青青草原| 亚洲欧美激情一区二区三区| 天天av天天翘天天综合网色鬼国产 | 一区二区三区在线视频观看| 欧美日韩在线播放一区| 亚洲综合自拍网| 久久99精品国产麻豆婷婷洗澡| 国产偷国产偷亚洲高清人白洁| 国精品无码一区二区三区| 91免费看片在线观看| 性久久久久久久久久久久| 精品国产乱码91久久久久久网站| 日韩欧美在线视频播放| 99久久精品情趣| 午夜精品久久久久久久蜜桃app| 欧美成人aa大片| 极品色av影院| www.555国产精品免费| 蜜桃av噜噜一区| 国产精品麻豆欧美日韩ww| 欧美日韩日日摸| 国产精品三级在线观看无码| 国产经典欧美精品| 亚洲国产精品一区二区www| 欧美xingq一区二区| 免费在线观看一级片| 中文字幕三级电影| 国产精品综合网| 亚洲主播在线播放| 久久美女艺术照精彩视频福利播放| 男人的天堂久久久| 捆绑凌虐一区二区三区| 国产.精品.日韩.另类.中文.在线.播放 | 非洲一级黄色片| 91影视在线播放| 久色婷婷小香蕉久久| 亚洲免费三区一区二区| 精品国产电影一区二区| 在线视频一区二区三| wwwwww日本| 一级黄色免费毛片| 国产在线看一区| 亚洲电影一区二区| 日本一区二区三区久久久久久久久不| 欧美日韩一区小说| 免费黄色激情视频| 好吊色视频一区二区三区| 处破女av一区二区| 麻豆精品久久久| 一区二区免费看| 中文字幕欧美激情一区|