免费的av网站_手机免费观看av_男人操女人下面视频_无码人妻一区二区三区一_亚洲一区二区三区四区av_色婷婷在线视频观看_第四色在线视频_国产成人精品无码片区在线_国产一级二级在线观看_日本免费网站视频

Nano-engineering the material structure of preferentially oriented nano-graphitic carbon for making high-performance electrochemical micro-sensors
Edoardo Cuniberto, Abdullah Alharbi, Ting Wu, Zhujun Huang, Kasra Sardashti, Kae-Dyi You, Kim Kisslinger, Takashi Taniguchi, Kenji Watanabe, Roozbeh Kiani & Davood Shahrjerdi
Scientific Reports volume 10, Article number: 9444 (2020) Cite this article

[Abstract]
Direct synthesis of thin-film carbon nanomaterials on oxide-coated silicon substrates provides a viable pathway for building a dense array of miniaturized (micron-scale) electrochemical sensors with high performance. However, material synthesis generally involves many parameters, making material engineering based on trial and error highly inefficient. Here, we report a two-pronged strategy for producing engineered thin-film carbon nanomaterials that have a nano-graphitic structure. First, we introduce a variant of the metal-induced graphitization technique that generates micron-scale islands of nano-graphitic carbon materials directly on oxide-coated silicon substrates. A novel feature of our material synthesis is that, through substrate engineering, the orientation of graphitic planes within the film aligns preferentially with the silicon substrate. This feature allows us to use the Raman spectroscopy for quantifying structural properties of the sensor surface, where the electrochemical processes occur. Second, we find phenomenological models for predicting the amplitudes of the redox current and the sensor capacitance from the material structure, quantified by Raman. Our results indicate that the key to achieving high-performance micro-sensors from nano-graphitic carbon is to increase both the density of point defects and the size of the graphitic crystallites. Our study offers a viable strategy for building planar electrochemical micro-sensors with high-performance.


[Introduction]
Carbon materials are widely used in building electrochemical sensors for detecting biomolecules because of their favorable electrochemical activity, bio-compatibility, rich surface chemistry, and strong resistance to bio-fouling. In biomolecule sensing applications, it is desirable to implement a large-scale sensing system comprising many small (micron-sized) carbon electrodes with high packing density. However, such large-scale systems are challenging to implement. In particular, existing implementations are limited mainly to one or a handful of carbon electrodes1,2,3,4,5.


Significant progress has been made on the development of single-electrode micro-sensors from bulk carbon materials, such as carbon fibers6,7 and nanotube yarns8,9. However, the large cylindrical form of these materials (>5 μm diameter) limits them to the fabrication of single or small-array micro-sensors. Importantly, while past research on this topic has evaluated a wide variety of carbon-based materials for boosting the sensor performance, the search for an optimal carbon material is still ongoing10,11,12,13. It is generally accepted that, in a carbon material, defects and functional groups influence the sensitivity and the charging current of carbon-based electrochemical sensors. However, from a fundamental standpoint, a detailed understanding of the underlying electrochemical mechanisms that control these sensor characteristics, i.e. electron transfer rate and electrode capacitance, is still a subject of research14,15,16,17.


Due to the above-mentioned limitations of bulk carbon materials in producing a dense sensor array, one promising strategy is to form thin-film carbon materials on dielectric substrates using standard microfabrication techniques. This generally involves converting lithographically-defined polymeric islands into pure sp2 hybridized carbon through a high-temperature thermal treatment (a process known as pyrolysis)18,19,20,21,22,23,24,25. Of various substrates, dielectric-coated silicon is an attractive choice because of its low cost, its commercial availability in large dimensions (up to 300?mm diameter), and its compatibility with standard micro-fabrication techniques. The latter feature is particularly useful for making functional sensor carriers from silicon substrates, e.g., by shaping silicon into narrow and flexible shafts for applications in neural interfacing. However, the thermal stability of silicon substrates limits the production temperature of these microfabricated thin-film carbon materials to below 1100?°C. Due to this temperature limit, the resulting material has a fully disordered sp2 structure with slow electron transfer kinetics. Hence, even though this microfabrication process provides a simple method for making thin-film pyrolyzed carbon materials, the resulting sensors have poor sensing characteristics18,26.

......

For any more information, please log on https://www.nature.com/articles/s41598-020-66408-9

免费的av网站_手机免费观看av_男人操女人下面视频_无码人妻一区二区三区一_亚洲一区二区三区四区av_色婷婷在线视频观看_第四色在线视频_国产成人精品无码片区在线_国产一级二级在线观看_日本免费网站视频
国产一区二区三区在线观看精品| 精品亚洲aⅴ无码一区二区三区| 91久久人澡人人添人人爽欧美| 国产色综合一区| 久久福利视频一区二区| 西西大胆午夜视频| 这里只有精品99re| 亚洲成人精品一区| 日本天堂在线播放| 精品视频在线免费观看| 夜夜亚洲天天久久| 国产吃瓜黑料一区二区| 欧美日韩专区在线| 亚洲成人av一区二区| 国产伦精品一区二区三区精品| 欧美日韩视频一区二区| 亚洲午夜电影网| 亚洲精品久久一区二区三区777| 欧美日韩国产经典色站一区二区三区| 怡红院av一区二区三区| 韩国三级hd中文字幕有哪些| 欧美天堂一区二区三区| 亚洲高清免费在线| 五月开心播播网| 久久综合久久综合久久综合| 国产呦精品一区二区三区网站| 青青青视频在线免费观看| 国产欧美一区二区三区在线老狼| 国产成人自拍在线| 色综合久久久久综合| 亚洲精品国产高清久久伦理二区| 一个人看的视频www| 欧美高清dvd| 久久国产日韩欧美精品| 精品一区二区在线观看视频| 国产精品超碰97尤物18| 91年精品国产| 欧美一区二区三区四区五区 | 亚洲AV无码国产成人久久| www激情久久| 国产成人av一区二区三区在线观看| 杨钰莹一级淫片aaaaaa播放| 亚洲精品国产第一综合99久久| 国产黑丝一区二区| 国产亚洲一本大道中文在线| 不卡电影一区二区三区| 欧美电影一区二区三区| 激情五月播播久久久精品| 亚洲综合久久av一区二区三区| 亚洲另类在线视频| 国产又爽又黄无码无遮挡在线观看| 久久久久久久久久久久电影| av在线不卡免费看| 日韩欧美在线网站| 夫妻av一区二区| 欧美精品一卡二卡| 国产精品夜夜爽| 欧美三级在线播放| 狠狠狠色丁香婷婷综合久久五月| 一本到不卡精品视频在线观看| 午夜激情综合网| 91狠狠综合久久久| 午夜不卡在线视频| 成人黄色短视频| 亚洲成人av电影| 黄色录像一级片| 婷婷开心激情综合| 精品国产精品国产精品| 天堂va蜜桃一区二区三区漫画版| 91视频免费看片| 亚洲va国产va欧美va观看| 国产精品久久久免费看| 天天综合天天做天天综合| 黄色录像一级片| 蜜桃av噜噜一区二区三区小说| 一本在线高清不卡dvd| 麻豆国产精品一区二区三区| 91成人国产精品| 国产最新精品精品你懂的| 欧美日韩一卡二卡三卡| 国产成人欧美日韩在线电影| 91精品国产欧美一区二区| 成人手机电影网| 精品处破学生在线二十三| 国产裸体视频网站| 国产精品久久久久久久久久免费看| 搡老熟女老女人一区二区| 亚洲男人的天堂av| 亚洲少妇xxx| 久久er99精品| 91精品国产麻豆国产自产在线| 成人激情黄色小说| 久久一留热品黄| 一区二区视频观看| 亚洲综合丁香婷婷六月香| www.5588.com毛片| 精品制服美女丁香| 欧美一区二区黄| 国产成人av片| 亚洲欧美色图小说| 久久一级免费视频| 麻豆精品视频在线观看视频| 在线不卡免费欧美| 久久精品无码一区二区三区毛片| 国产精品午夜免费| 欧美大波大乳巨大乳| 日韩黄色片在线观看| 欧美日韩国产一级| 91美女片黄在线| 亚洲图片欧美激情| 婷婷久久综合网| 国产成人精品综合在线观看| 久久综合久色欧美综合狠狠| 日韩人妻一区二区三区| 日韩精品久久理论片| 9191成人精品久久| 亚洲色图欧美另类| 一区二区三区不卡视频在线观看| 亚洲国产美女视频| 成人高清视频在线观看| 国产精品久线在线观看| 91狠狠综合久久久| 国产91在线|亚洲| 国产精品毛片高清在线完整版| 国产在视频线精品视频| 国产一区二区三区免费播放| 国产亚洲欧美日韩俺去了| 中文字幕黄色网址| 国产一区二区在线免费观看| 国产亚洲欧美一级| 美国黄色片视频| 国产成a人无v码亚洲福利| 欧美国产日本韩| 五月天av网站| 97成人超碰视| 亚洲一区二区欧美激情| 欧美人体做爰大胆视频| a天堂视频在线观看| 男男成人高潮片免费网站| 日韩女同互慰一区二区| 国产一区二区三区四区五区六区| 精品亚洲aⅴ乱码一区二区三区| 久久久美女毛片| 欧美做爰啪啪xxxⅹ性| 成人黄页在线观看| 悠悠色在线精品| 91精品国产综合久久久久久漫画| 国产在线观看无码免费视频| 久久精品国产精品亚洲红杏| 久久精品人人爽人人爽| 在线观看美女av| 26uuu国产| 秋霞午夜鲁丝一区二区老狼| 久久先锋影音av| 男女做暖暖视频| 潘金莲一级淫片aaaaaaa| 午夜精品免费在线观看| 精品久久久三级丝袜| 精品国产大片大片大片| 97精品电影院| 日韩av电影天堂| 久久综合色8888| 日本天堂中文字幕| 97精品人妻一区二区三区蜜桃| 免费在线观看一区二区三区| 国产情人综合久久777777| 一本到不卡免费一区二区| 免费黄色三级网站| 国产剧情在线观看一区二区| 亚洲人成网站色在线观看| 7777精品伊人久久久大香线蕉| 熟女少妇内射日韩亚洲| 波多野结衣欧美| 日本aⅴ免费视频一区二区三区| 国产亚洲福利社区一区| 欧美性欧美巨大黑白大战| 三上悠亚ssⅰn939无码播放 | 日韩一级二级三级精品视频| 在线观看天堂av| 国内精品免费视频| 国产麻豆成人精品| 亚洲中国最大av网站| 久久久国产午夜精品| 欧美中文字幕一区二区三区| 国产男男chinese网站| www.亚洲精品| 蜜臀av在线播放一区二区三区 | 久久久久久久精| 欧美在线综合视频| 日本一二三不卡视频| 欧美熟妇精品一区二区| 国产精品一区二区不卡| 亚洲成在人线免费| 国产精品久久久久影视| 91精品国产高清一区二区三区蜜臀| 国产色无码精品视频国产| 亚洲久久久久久| eeuss鲁片一区二区三区在线观看| 蜜臀久久99精品久久久久久9 | 国产精品久久久久一区二区三区共 |