免费的av网站_手机免费观看av_男人操女人下面视频_无码人妻一区二区三区一_亚洲一区二区三区四区av_色婷婷在线视频观看_第四色在线视频_国产成人精品无码片区在线_国产一级二级在线观看_日本免费网站视频

Rational design can improve hydrogen fuel cell efficiencyIllustration of the trimetallic sandwich-like structure. Redox reactions take place on M1, while M2 tunes the electronic structure of M1, and M3 serves as the substrate and contributes to performance by straining M2. Image credit: Stolbov and Alcántara Ortigoza. ?2012 American Chemical Society

Hydrogen fuel cells, in which the chemical energy of hydrogen is converted into electricity, offer the potential for a wide variety of applications, especially in transportation and power generation. Although hydrogen fuel cells are currently used on a small scale, making them commercially available for large-scale use requires improvements in two key areas: efficiency and cost-effectiveness. In a new study, scientists have designed tri-metallic electrocatalysts for hydrogen fuel cells that theoretically improve in both areas, outperforming the best platinum-based catalysts to date.

The researchers, Sergey Stolbov and Marisol Alcántara Ortigoza from the University of Central Florida, have published their study on the new efficient electrocatalysts in a recent issue of The Journal of Physical Chemistry Letters.

Currently, most hydrogen fuel cells use catalysts made of platinum, a rare and expensive material. Finding an alternative to platinum is challenging because few materials can withstand exposure to the fuel cells’ highly acidic solvents, which dissolve most transition metals. Only four elements – platinum, iridium, gold, and palladium – can resist corrosion, but none is ideal. Platinum and iridium are rare and expensive, while gold and palladium do not perform well due to low redox reactivity.

In this study, Stolbov and Alcántara Ortigoza focused on improving the redox reactivity of gold and palladium through the use of in-depth modeling.

“We have proposed a new concept for rational design of stable and highly active electrocatalysts for hydrogen fuel cells,” Stolbov told PhysOrg.com. “We believe that our approach is much more efficient than the widely used combinatorial screening of dozens of materials. Our first attempt to apply this approach has resulted in the prediction of two cost-effective and highly active catalysts for hydrogen fuel cells, a clean and renewable energy source.”

The researchers explained that previous attempts at searching for better catalyst designs have used trial and error, although some studies have used computational searches. By using a rational design approach, the researchers could predict the performance of different tri-metallic catalyst designs using previous knowledge, such as the relationship between the composition/morphology and electronic structure of the catalyst surface, its stability, the thermodynamics that the reaction intermediates, and the reaction kinetics.

This method led the researchers to a new design consisting of a three-layered sandwich-like structure. In this design, redox reactions take place on the first layer, while the second layer can tune the electronic structure of the first layer, and the third layer serves as the substrate. As an example, the researchers used gold as the first layer, then chose ruthenium as the second layer due to its ability to tune the gold layer to increase its redox reactivity. When using palladium as the first layer, their method predicted iron as a good tuning material. The ruthenium and iron do not have to come in contact with the acidic solvent, yet still contribute to the catalyst’s efficiency. In both cases, the researchers used tungsten as the substrate, which also contributed to performance in a twice-removed way by straining the middle layer.

The researchers’ calculations showed that both the gold-based and palladium-based sandwich-like catalysts were more highly reactive and therefore more efficient than today’s best platinum-based catalysts. How much more efficient can only be accurately determined by experiments, which the researchers hope will be performed soon.

“We are looking forward to experimental confirmation of our findings,” Stolbov said. “We are contacting experimentalists who are interested in these materials. Using our approach, we have already selected a number of sandwich-like structures as promising electrocatalysts in an attempt to find even better catalysts. In order to test this rational selection, we will perform computational studies of the electronic structure and stability of the chosen systems and the thermodynamic properties of the reaction intermediates on the catalyst surfaces. Then again, we will ask experimentalists for testing the most promising systems. Since our approach can be extended to design the stable structures tuned for reactions in heterogeneous catalysts, we will focus on this subject next.”

More information: Sergey Stolbov and Marisol Alcántara Ortigoza. “Rational Design of Competitive Electrocatalysts for Hydrogen Fuel Cells.” The Journal of Physical Chemistry Letters, 2012, 3, 463-467. DOI: 10.1021/jz201551e

http://www.physorg.com/news/2012-02-rational-hydrogen-fuel-cell-efficiency.html

免费的av网站_手机免费观看av_男人操女人下面视频_无码人妻一区二区三区一_亚洲一区二区三区四区av_色婷婷在线视频观看_第四色在线视频_国产成人精品无码片区在线_国产一级二级在线观看_日本免费网站视频
国产精品毛片无遮挡高清| 91在线视频官网| 精品少妇人妻一区二区黑料社区| 欧美日韩国产一区| 亚洲色图欧美在线| 成人免费视频caoporn| 91麻豆精品久久毛片一级| 26uuu国产日韩综合| 免费一级片91| 国产精品三级在线观看无码| 日韩一区二区三区视频在线| 视频一区中文字幕| 亚洲黄色免费在线观看| 91麻豆精品国产自产在线观看一区| 亚洲国产精品久久久久婷婷884| 91亚洲国产成人精品一区二三 | 国产精品羞羞答答xxdd| 无码国产69精品久久久久同性| 日韩欧美在线不卡| 久久精品国内一区二区三区| 国产美女免费无遮挡| 2021国产精品久久精品| 国产九色sp调教91| 久久久久久久麻豆| 综合久久久久久| 91亚洲国产成人精品一区二三| 欧美三级日韩在线| 午夜精品久久久久久久久久久| 亚洲精品乱码久久| 日韩久久久久久| 精东粉嫩av免费一区二区三区| 秋霞网一区二区三区| 国产精品乱码人人做人人爱| 99精品偷自拍| 6080日韩午夜伦伦午夜伦| 日本怡春院一区二区| 色屁屁草草影院ccyy.com| 国产精品色在线| 91污在线观看| 日韩三级免费观看| 国内精品自线一区二区三区视频| 欧美性生交大片| 成人欧美一区二区三区1314| 亚洲成人激情小说| 日韩女优av电影| 国内一区二区视频| 色婷婷综合激情| 亚瑟在线精品视频| 日本猛少妇色xxxxx免费网站| 国产精品久久久久一区二区三区共 | 久久久久久久穴| 欧美一区午夜视频在线观看| 国内成人免费视频| 高h视频免费观看| 午夜视频久久久久久| 精品熟妇无码av免费久久| 亚洲欧美一区二区三区国产精品| 午夜男人的天堂| 国产人伦精品一区二区| 无码国产精品久久一区免费| 精品国产伦一区二区三区观看体验| 风间由美中文字幕在线看视频国产欧美 | 中文字幕乱码在线人视频| 日韩欧美国产麻豆| 成人午夜激情影院| 3751色影院一区二区三区| 国产一区二区伦理| 欧美日韩国产片| 韩国精品主播一区二区在线观看 | 外国一级黄色片| 日韩中文字幕区一区有砖一区 | 韩国一级黄色录像| 午夜精品福利视频网站| 久草视频手机在线| 日本在线观看不卡视频| 色综合婷婷久久| 久久精品国产一区二区| 在线区一区二视频| 国产综合色产在线精品| 欧美日韩另类国产亚洲欧美一级| 国产一区欧美日韩| 69堂国产成人免费视频| 成年人国产精品| 2019国产精品| 怡红院一区二区| 亚洲欧洲日韩在线| 91激情视频在线观看| 亚洲一区二区视频在线观看| 夫妇露脸对白88av| 日韩精品福利网| 在线观看视频一区二区欧美日韩| 国产真实乱子伦精品视频| 69成人精品免费视频| 99精品在线免费| 欧美激情中文不卡| 一本色道久久综合亚洲精品图片| 一区二区在线看| 国产精品99久久久久久成人| 开心九九激情九九欧美日韩精美视频电影| 在线观看欧美日本| 高清不卡一二三区| 久久久久97国产精华液好用吗| 中文字幕精品视频在线| 一区二区在线观看不卡| 国语对白在线播放| 国产一区 二区| 精品国产乱子伦一区| 喷水视频在线观看| 亚洲一区在线观看网站| 91久久奴性调教| 福利一区福利二区| 国产蜜臀av在线一区二区三区| 黑人巨大精品欧美| 天天综合天天做天天综合| 欧美偷拍一区二区| 91香蕉视频mp4| 亚洲色图制服丝袜| 国产一二三四区| 国产成人免费在线视频| 国产区在线观看成人精品| 国产sm调教视频| 麻豆免费看一区二区三区| 欧美区在线观看| 韩国黄色一级片| 亚洲综合一区二区三区| 色婷婷av久久久久久久| eeuss国产一区二区三区| 国产精品久久久久aaaa| 黄色a级片在线观看| 粉嫩aⅴ一区二区三区四区五区| 中文字幕乱码久久午夜不卡| 国产日韩精品中文字无码| 国内精品伊人久久久久av影院| 久久亚洲二区三区| 精品人伦一区二区| 韩国av一区二区| 中文字幕欧美区| www欧美com| 99热精品一区二区| 亚洲人成小说网站色在线 | 久久国产劲爆∧v内射| 亚洲成年人影院| 91精品国产一区二区三区| 亚洲av成人无码一二三在线观看| 日韩 欧美一区二区三区| 日韩精品中文字幕一区二区三区| www.色天使| 国产在线播放一区二区三区| 中文字幕成人在线观看| 草视频在线观看| 国产91在线免费观看| 亚洲高清免费视频| 日韩视频免费观看高清完整版 | 亚洲视频在线播放免费| 美腿丝袜亚洲三区| 国产亚洲一区二区三区四区| 亚洲天堂黄色片| 波多野结衣电影免费观看| 日韩专区中文字幕一区二区| wwwwxxxxx欧美| 中文字幕av播放| 性生交大片免费看l| 免费在线看一区| 国产精品私人影院| 91久久精品一区二区三| 国产一级伦理片| 国产在线精品一区二区| 亚洲欧美一区二区在线观看| 欧美疯狂性受xxxxx喷水图片| 国产一区二区三区四区五区六区| 国产91在线看| 亚洲成人黄色小说| 久久先锋影音av| 色哟哟欧美精品| 国产精品嫩草av| 国产成人精品亚洲777人妖| 一区二区三区精品视频在线| 日韩欧美一卡二卡| 九九精品视频免费| 91九色蝌蚪porny| 黄色资源网久久资源365| 亚洲欧美日本韩国| 欧美成人一区二区| 国产精品久久久精品四季影院| 天天躁日日躁狠狠躁av| 国产一区二区三区免费看 | 91年精品国产| 久久国产夜色精品鲁鲁99| 国产精品护士白丝一区av| 911国产精品| www色aa色aawww| 成人在线视频免费播放| 国产91在线观看丝袜| 五月婷婷久久丁香| 国产精品素人一区二区| 日韩一区二区三| 日本精品裸体写真集在线观看| caopeng视频| 特黄特色免费视频| 国产电影一区二区三区|