免费的av网站_手机免费观看av_男人操女人下面视频_无码人妻一区二区三区一_亚洲一区二区三区四区av_色婷婷在线视频观看_第四色在线视频_国产成人精品无码片区在线_国产一级二级在线观看_日本免费网站视频

Tighter 'stitching' makes better grapheneFalse-color microscopy images show examples of graphene grown slowly, resulting in large patches with poor stitching, and graphene grown more quickly, resulting in smaller patches with tighter stitching and better performance. (Muller lab)

Similar to how tighter stiches make for a better quality quilt, the "stitching" between individual crystals of graphene affects how well these carbon monolayers conduct electricity and retain their strength, Cornell researchers report.

The quality of this "stitching" -- the boundaries at which graphene crystals grow together and form sheets -- is just as important as the size of the crystals themselves, which scientists had previously thought held the key to making better graphene.

The researchers, led by Jiwoong Park, assistant professor of chemistry and chemical biology and a member of the Kavli Institute at Cornell for Nanoscale Science, used advanced measurement and imaging techniques to make these claims, detailed online in the journal Science June 1.

Graphene is a single layer of carbon atoms, and materials scientists are engaged in a sort of arms race to manipulate and enhance its amazing properties -- tensile strength, high electrical conductance, and potential applications in photonics, photovoltaics and electronics. Cartoons depict graphene like a perfect atomic chicken wire stretching ad infinitum.

In reality, graphene is polycrystalline; it is grown via a process called chemical vapor deposition, in which small crystals, or grains, at random orientations grow by themselves and eventually join together in carbon-carbon bonds.

Tighter 'stitching' makes better graphene
Enlarge

A scanning electron microscope (SEM) image of graphene crystals growing on copper. The inset is a false-color SEM image of an electrical device consisting of a single grain boundary in graphene. (Wei Tsen/Park lab)

In earlier work published in Nature last January, the Cornell group had used electron microscopy to liken these graphene sheets to patchwork quilts -- each "patch" represented by the orientation of the graphene grains (and false colored to make them pretty).

They, along with other scientists, wondered how graphene's electrical properties would hold up based on its polycrystalline nature. Conventional wisdom and some prior indirect measurements had led scientists to surmise that growing graphene with larger crystals -- fewer patches -- might improve its properties.

The new work questions that dogma. The group compared how graphene performed based on different rates of growth via chemical vapor deposition; some they grew more slowly, and others, very quickly. They found that the more reactive, quick-growth graphene, with more patches, in certain ways performed better electronically than the slower growth graphene with larger patches.

As it turned out, faster growth led to tighter stitching between grains, which improved the graphene's performance, as opposed to larger grains that were more loosely held together.

"What's important here is that we need to promote the growth environment so that the grains stitch together well," Park said. "What we are showing is that grain boundaries were a main concern, but it could be that it doesn't matter. We are finding that it's probably OK."

Equal in importance to these observations were the complex techniques they used to make the measurements -- no easy task. A four-step electron beam lithography process, developed by Adam Tsen, an applied physics graduate student and the paper's first author, allowed the researchers to place electrodes on graphene, directly on top of a 10 nanometer-thick membrane substrate to measure electrical properties of single grain boundaries.

"Our technique sets a tone for how we can measure atomically thin materials in the future," Park added.

Collaborators led by David A. Muller, professor of applied and engineering physics and co-director of the Kavli Institute at Cornell for Nanoscale Science, used advanced transmission electron microscopy techniques to help Park's group image their graphene to show the differences in the grain sizes.

The work was supported by the Air Force Office of Scientific Research, and the National Science Foundation through the Cornell Center for Materials Research. Fabrication was performed at the Cornell NanoScale Science and Technology Facility.

Journal reference: Science search and more infowebsite

http://phys.org/news/2012-06-tighter-graphene.html

免费的av网站_手机免费观看av_男人操女人下面视频_无码人妻一区二区三区一_亚洲一区二区三区四区av_色婷婷在线视频观看_第四色在线视频_国产成人精品无码片区在线_国产一级二级在线观看_日本免费网站视频
国产精品九九九九九| 亚洲欧美日韩成人高清在线一区| 美女网站色91| 一起草在线视频| 欧美精品色一区二区三区| 亚洲一区二区三区激情| 99久久久免费精品国产一区二区| 日韩av手机在线免费观看| 国产色产综合产在线视频| 国产在线播精品第三| 高清国产在线观看| 久久久电影一区二区三区| 国产老妇另类xxxxx| av在线播放中文字幕| 久久久精品欧美丰满| 国产夫妻精品视频| 九九精品视频免费| 亚洲视频一区二区在线观看| 99精品欧美一区| 欧美亚洲图片小说| 亚洲成人777| 国产精品无码电影| 精品欧美一区二区三区精品久久| 蜜桃av噜噜一区| 天天干天天操天天拍| 国产日韩欧美一区二区三区乱码| 国产成a人亚洲精| 国产精品成人免费观看| 亚洲激情中文1区| 无码成人精品区在线观看| 日韩欧美一区二区免费| 精油按摩中文字幕久久| 日韩在线观看免| 亚洲人123区| 中文字幕一区二区三区人妻在线视频| 欧美夫妻性生活| 久久激情五月婷婷| 国产3级在线观看| 亚洲丝袜自拍清纯另类| 美女搡bbb又爽又猛又黄www| 日韩欧美国产wwwww| 国模冰冰炮一区二区| 永久久久久久久| 一区二区三国产精华液| 丰满少妇在线观看资源站| 国产亚洲制服色| 91热门视频在线观看| 欧美一区二区三区不卡| 国模冰冰炮一区二区| 色94色欧美sute亚洲线路一久 | 不卡一区二区在线| 欧美美女视频在线观看| 久久99久久99小草精品免视看| 天天鲁一鲁摸一摸爽一爽| 亚洲综合激情网| 亚洲精品成人无码| 亚洲天堂2014| av无码av天天av天天爽| 中文字幕国产一区二区| 无码人妻一区二区三区一| 精品国产免费人成电影在线观看四季| 成人一区二区三区视频| 欧美二区三区的天堂| 国产精品一区二区视频| 精品视频一区二区三区免费| 激情文学综合丁香| 欧美午夜片在线看| 国产一区二区三区免费在线观看| 91成人国产精品| 精久久久久久久久久久| 欧美网站一区二区| 国内久久婷婷综合| 欧美日韩精品一区二区三区蜜桃| 九九九精品视频| 欧美日本乱大交xxxxx| 国产精品一区二区三区99| 欧美精品三级日韩久久| 粉嫩一区二区三区性色av| 日韩一区二区三区免费观看| www.日韩av| xnxx国产精品| 日本精品一二三区| 国产精品另类一区| 李宗瑞91在线正在播放| 一区二区三区四区在线| 天天爽天天爽天天爽| 日本午夜一本久久久综合| 在线中文字幕一区| 国产美女主播视频一区| 欧美一区二区三区视频免费播放 | 成人一级片免费看| 午夜免费久久看| 91久久精品一区二区| 国产精品性做久久久久久| 日韩一区二区三区三四区视频在线观看 | av在线综合网| 国产欧美一区二区精品仙草咪| 日本黄色免费观看| 亚洲一二三四区| 中文字幕手机在线观看| 国产乱妇无码大片在线观看| 日韩欧美电影在线| 扒开伸进免费视频| 亚洲欧美激情小说另类| 一区视频免费观看| 精品一区二区在线免费观看| 777精品伊人久久久久大香线蕉| 99久久精品国产毛片| 中文一区一区三区高中清不卡| a级大片在线观看| 日韩专区中文字幕一区二区| 欧美视频在线一区| av不卡免费在线观看| 国产精品人人做人人爽人人添| 久久精品三级视频| 极品瑜伽女神91| 亚洲精品一区在线观看| 亚洲人人夜夜澡人人爽| 亚洲成av人**亚洲成av**| 欧美三级视频在线| 下面一进一出好爽视频| 亚洲天堂2014| 91久久精品日日躁夜夜躁欧美| 成人免费视频一区二区| 国产精品青草久久| 精品国产精品国产精品| 成人av在线播放网址| 中文字幕日韩av资源站| 中文字幕在线2021| 白白色亚洲国产精品| 日韩美女啊v在线免费观看| 色综合一区二区| 97se亚洲国产综合自在线| 亚洲精品成人在线| 欧美日韩亚洲不卡| 91九色蝌蚪porny| 日韩影院免费视频| 日韩欧美国产成人一区二区| 成人午夜福利一区二区| 精品一区二区三区免费毛片爱| 久久久亚洲高清| 天海翼在线视频| 成人蜜臀av电影| 亚洲精品视频在线观看免费| 欧美写真视频网站| 色综合久久五月| 蜜臀av一区二区在线观看| 精品国产免费视频| 永久av免费网站| 99久久精品国产一区| 亚洲在线免费播放| 欧美一级高清片在线观看| 极品人妻videosss人妻| 国产成人综合在线观看| 亚洲欧美综合另类在线卡通| 欧美性猛交xxxx乱大交退制版| 一级黄色片毛片| 美日韩黄色大片| 中文一区在线播放| 欧美性受xxxx黑人xyx| 国产精品久久久免费观看| 韩日精品视频一区| 17c精品麻豆一区二区免费| 欧美日韩视频在线观看一区二区三区| 一级特黄a大片免费| 国产乱码精品一区二区三区忘忧草 | 日韩精品一卡二卡三卡四卡无卡| 日韩精品一区二区三区在线| 99re6热在线精品视频| 99精品桃花视频在线观看| 午夜视频一区二区| 2023国产精品自拍| 日本久久一区二区三区| 日批在线观看视频| 国产精品亚洲人在线观看| 亚洲精品国久久99热| 日韩视频一区二区在线观看| 精品亚洲乱码一区二区| jjzz黄色片| 国产精品一线二线三线| 亚洲一区二区三区爽爽爽爽爽| ww亚洲ww在线观看国产| 91久久精品一区二区三| 波多野结衣办公室33分钟| 成人福利视频网站| 日韩av成人高清| 成人免费在线视频观看| 日韩精品中文字幕在线一区| 粉嫩av性色av蜜臀av网站| 一级特级黄色片| 成人h精品动漫一区二区三区| 亚洲va天堂va国产va久| 欧美激情一区二区三区蜜桃视频| 欧美日韩精品一区二区在线播放| 日本精品久久久久中文| 国产免费无码一区二区| 国产精品白丝jk白祙喷水网站| 亚洲妇女屁股眼交7| 欧美国产一区二区在线观看| 这里只有精品视频在线观看|