免费的av网站_手机免费观看av_男人操女人下面视频_无码人妻一区二区三区一_亚洲一区二区三区四区av_色婷婷在线视频观看_第四色在线视频_国产成人精品无码片区在线_国产一级二级在线观看_日本免费网站视频

[1]雷波,馬曉龍 *.仿生納米纖維支架促進骨組織再生[J].中國材料進展,2013,(10):033-45.[doi:10.7502/j.issn.1674-3962.2013.10.02]
點擊復制

仿生納米纖維支架促進骨組織再生()
分享到:

中國材料進展[ISSN:1674-3962/CN:61-1473/TG]

卷:
期數:
2013年第10期
頁碼:
033-45
欄目:
特約研究論文
出版日期:
2013-10-31

文章信息/Info

文章編號:
1674?962 (2013)10-
作者:
雷波1馬曉龍12 *
(1西安交通大學,前沿科學技術研究院,中國 陜西 西安 710054)
關鍵詞:
骨組織工程納米纖維支架仿生材料骨組織再生
分類號:
TG 146.4
DOI:
10.7502/j.issn.1674-3962.2013.10.02
文獻標志碼:
A
摘要:
人口老齡化,疾病以及交通事故等造成大量的人體骨組織損傷和丟失。如何實現骨組織缺損的快速修復與再生成為臨床醫學研究的重要課題和目標,而生物醫用材料在其中發揮著極其重要的作用。目前臨床上常用的骨組織修復材料如自體骨、異體骨、合成材料(金屬,陶瓷,高分子)等都存在各種各樣的問題,無法實現大規模的應用和骨組織的快速有效再生。而骨組織工程學科研究多孔支架結合細胞和生長因子來實現骨組織再生,以解決骨科臨床面臨的問題為目的。最近十多年來,三維納米纖維支架由于可以仿天然細胞外基質的結構和形態而顯示出較強的促進細胞增殖、成骨分化以及骨組織修復再生的能力。本文主要綜述具有仿生的納米纖維及其復合支架材料的制備技術以及他們在增強細胞功能、干細胞成骨分化、及其骨組織再生中的應用。
Abstract:
Population aging, bone diseases and accidents result in a large number of patients with serious bone loss and defects. The efficient bone tissue repair and regeneration have been important topics in clinical medicine. Here, biomedical materials play an important role in bone regeneration. However, current clinical bone-repair biomaterials such as autografts, allografts and synthetic materials (metals, ceramics and polymers) suffer from various shortcomings, having limited applications in bone repair. In bone tissue engineering research, biodegradable scaffolds along with cells and growth factors have shown high potential in facilitating bone regeneration as a potential new therapy for bone loss in the clinic. In the past decade, due to their structure and morphology that mimic the native extracellular matrix, nanofibrous scaffolds have been shown to be capable of facilitating cell proliferation、osteogenic differentiation of stem cells, and bone regeneration in vivo compared to control scaffolds. In this paper, we will review the fabrication technologies of biomimetic nanofibrous scaffolds and their applications in enhancing cellular function, osteogenic differentiation, and bone tissue regeneration.

參考文獻/References:

References
[1] Gruskin E, Doll BA, Futrell FW, et al. Demineralized bone matrix in bone repair: History and use [J]. Advanced Drug Delivery Reviews, 2012,64(12):1063-1077.
[2] Geetha M, Singh A, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants朼 review [J]. Progress in Materials Science, 2009,54(3):397-425.
[3] Bohner M. Resorbable biomaterials as bone graft substitutes [J]. Materials Today, 2010,13(1?):24-30.
[4] Zandonella C. Tissue engineering: The beat goes on [J]. Nature, 2003,421(6926):884-886.
[5] Hubbell JA. Biomaterials in tissue engineering [J]. Nature Biotechnology, 1995,13(6):565-576.
[6] Boden SD. Bioactive factors for bone tissue engineering [J]. Clinical Orthopaedics and Related Research, 1999, 367(S84-S94).
[7] Bianco P, Robey PG. Stem cells in tissue engineering [J]. Nature, 2001,414(6859):118-121.
[8] Crane GM, Ishaug SL, Mikos AG. Bone tissue engineering [J]. Nature Medicine, 1995,1(12):1322-1324.
[9] Lutolf M, Hubbell J. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering [J]. Nature biotechnology, 2005, 23(1):47-55.
[10] Hollister SJ. Porous scaffold design for tissue engineering [J]. Nature materials, 2005,4(7):518-524.
[11] Lutolf MP, Weber FE, Schmoekel HG, et al. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices [J]. Nature biotechnology, 2003,21(5):513-518.
[12] Gentleman E, Swain RJ, Evans ND, et al. Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation [J]. Nature materials, 2009,8(9):763-770.
[13] Holzwarth JM, Ma PX. Biomimetic nanofibrous scaffolds for bone tissue engineering [J]. Biomaterials, 2011,32(36):9622-9629.
[14] Jang J-H, Castano O, Kim H-W. Electrospun materials as potential platforms for bone tissue engineering [J]. Advanced drug delivery reviews,2009,61(12):1065-1083.
[15] Ma PX. Biomimetic materials for tissue engineering [J]. Advanced drug delivery reviews, 2008,60(2):184-198.
[16] Holzwarth JM, Ma PX. 3D nanofibrous scaffolds for tissue engineering [J]. Journal of Materials Chemistry, 2011,21(28):10243-10251.
[17] Zhong S, Zhang Y, Lim CT. Fabrication of large pores in electrospun nanofibrous scaffolds for cellular infiltration: A review [J]. Tissue Engineering Part B: Reviews, 2011, 18(2):77-87.
[18] Blakeney BA, Tambralli A, Anderson JM, et al. Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold [J]. Biomaterials, 2011,32(6):1583-1590.
[19] Li WJ, Laurencin CT, Caterson EJ, et al. Electrospun nanofibrous structure: A novel scaffold for tissue engineering [J]. Journal of biomedical materials research, 2002,60(4):613-621.
[20] Yang F, Murugan R, Wang S, et al. Electrospinning of nano/micro scale poly (l-lactic acid) aligned fibers and their potential in neural tissue engineering [J]. Biomaterials, 2005,26(15):2603-2610.
[21] Park KE, Kang HK, Lee SJ, et al. Biomimetic nanofibrous scaffolds: Preparation and characterization of PGA/ chitin blend nanofibers [J]. Biomacromolecules, 2006,7(2):635-643.
[22] Li W-J, Tuli R, Huang X, et al. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold [J]. Biomaterials, 2005,26(25):5158-5166.
[23] Shih YRV, Chen CN, Tsai SW, et al. Growth of mesenchymal stem cells on electrospun type I collagen nanofibers [J]. Stem Cells, 2006,24(11):2391-2397.
[24] Li M, Mondrinos MJ, Gandhi MR, et al. Electrospun protein fibers as matrices for tissue engineering [J]. Biomaterials, 2005,26(30):5999-6008.
[25] Yang D, Jin Y, Zhou Y, et al. In situ mineralization of hydroxyapatite on electrospun chitosan‐based nanofibrous scaffolds [J]. Macromolecular bioscience, 2008,8(3):239-246.
[26] Bhattarai N, Li Z, Edmondson D, et al. Alginate‐based nanofibrous scaffolds: Structural, mechanical, and biological properties [J]. Advanced Materials, 2006, 18(11):1463-1467.
[27] Li C, Vepari C, Jin H-J, et al. Electrospun silk-BMP-2 scaffolds for bone tissue engineering [J]. Biomaterials, 2006,27(16):3115-3124.
[28] Li M, Mondrinos MJ, Chen X, et al. Co‐electrospun poly (lactide‐co‐glycolide), gelatin, and elastin blends for tissue engineering scaffolds [J]. Journal of Biomedical Materials Research Part A, 2006,79(4):963-973.
[29] Jose MV, Thomas V, Dean DR, et al. Fabrication and characterization of aligned nanofibrous PLGA/collagen blends as bone tissue scaffolds [J]. Polymer, 2009, 50(15):3778-3785.
[30] Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, et al. Electrospun poly (?-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering [J]. Biomaterials, 2008,29(34):4532-4539.
[31] Malheiro VN, Caridade SG, Alves NM, et al. New poly (ε-caprolactone)/chitosan blend fibers for tissue engineering applications [J]. Acta Biomaterialia, 2010,6(2):418-428.
[32] Zhang Y, Venugopal JR, El-Turki A, et al. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite /chitosan for bone tissue engineering [J]. Biomaterials, 2008,29(32):4314-4322.
[33] Fujihara K, Kotaki M, Ramakrishna S. Guided bone regeneration membrane made of polycaprolactone/ calcium carbonate composite nano-fibers [J]. Biomaterials, 2005,26(19):4139-4147.
[34] Pirzada T, Arvidson SA, Saquing CD, et al. Hybrid silica–pva nanofibers via sol–gel electrospinning [J]. Langmuir, 2012,28(13):5834-5844.
[35] Schofer MD, Roessler PP, Schaefer J, et al. Electrospun plla nanofiber scaffolds and their use in combination with bmp-2 for reconstruction of bone defects [J]. PLoS One, 2011,6(9): 25462.
[36] Woo KM, Chen VJ, Jung H-M, et al. Comparative evaluation of nanofibrous scaffolding for bone regeneration in critical-size calvarial defects [J]. Tissue Engineering Part A, 2009,15(8):2155-2162.
[37] Liang D, Hsiao BS, Chu B. Functional electrospun nanofibrous scaffolds for biomedical applications [J]. Advanced drug delivery reviews,2007,59(14):1392-1412.
[38] Zhang R and Ma PX. Poly((-hydroxyl acids)/hydroxyapatite porous composites for bone tissue engineering: 1. Preparation and morphology. Journal of Biomedical Materials Research, 1999, 44(4):446-455.
[39] Nam YS, Park TG. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation [J]. Journal of biomedical materials research, 1999,47(1):8-17.
[40] Smith L, Ma P. Nano-fibrous scaffolds for tissue engineering [J]. Colloids and surfaces B: biointerfaces, 2004,39(3):125-131.
[41] Ma PX. Scaffolds for tissue fabrication [J]. Materials today, 2004,7(5):30-40.
[42] Smith LA, Liu X, Ma PX. Tissue engineering with nano-fibrous scaffolds [J]. Soft Matter, 2008, 4(11):2144-2149.
[43] Ma PX, Choi J-W. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network [J]. Tissue Engineering, 2001,7(1):23-33.
[44] Liu X, Ma PX. Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds [J]. Biomaterials, 2009,30(25):4094.
[45] Liu X, Ma PX. The nanofibrous architecture of poly (l-lactic acid)-based functional copolymers [J]. Biomaterials, 2010,31(2):259-269.
[46] Liu X, Jin X, Ma PX. Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair [J]. Nature materials, 2011,10(5):398-406.
[47] Wei G, Ma PX. Macroporous and nanofibrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres [J]. Journal of Biomedical Materials Research Part A, 2006, 78(2):306-315.
[48] Lei B, Shin K-H, Noh D-Y, et al. Nanofibrous gelatin–silica hybrid scaffolds mimicking the native extracellular matrix (ecm) using thermally induced phase separation [J]. Journal of Materials Chemistry, 2012,22(28):14133-14140.
[49] Liu X, Smith LA, Hu J, et al. Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering [J]. Biomaterials, 2009,30(12):2252-2258.
[50] He C, Xiao G, Jin X, et al. Electrodeposition on nanofibrous polymer scaffolds: Rapid mineralization, tunable calcium phosphate composition and topography [J]. Advanced functional materials, 2010,20 (20): 3568-3576.
[51] He C, Zhang F, Cao L, et al. Rapid mineralization of porous gelatin scaffolds by electrodeposition for bone tissue engineering [J]. Journal of Materials Chemistry, 2012,22(5):2111-2119.
[52] Yoshimoto H, Shin Y, Terai H, et al. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering [J]. Biomaterials, 2003,24(12):2077-2082.
[53] Woo KM, Chen VJ, Ma PX. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment [J]. Journal of Biomedical Materials Research Part A, 2003, 67(2):531-537.
[54] Binulal N, Deepthy M, Selvamurugan N, et al. Role of nanofibrous poly (caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering—response to osteogenic regulators [J]. Tissue Engineering Part A, 2010, 16(2) :393-404.
[55] Wang J, Ma H, Jin X, et al. The effect of scaffold architecture on odontogenic differentiation of human dental pulp stem cells [J]. Biomaterials, 2011,32(31):7822-7830.
[56] Seong JM, Kim B-C, Park J-H, et al. Stem cells in bone tissue engineering [J]. Biomedical Materials, 2010, 5(6):062001.
[57] Hu J, Feng K, Liu X, et al. Chondrogenic and osteogenic differentiations of human bone marrow-derived mesenchymal stem cells on a nanofibrous scaffold with designed pore network [J]. Biomaterials, 2009, 30(28):5061-5067.
[58] Xin X, Hussain M, Mao JJ. Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold [J]. Biomaterials, 2007, 28(2) :316-325.
[59] Smith LA, Liu X, Hu J, et al. The influence of three-dimensional nanofibrous scaffolds on the osteogenic differentiation of embryonic stem cells [J]. Biomaterials, 2009,30(13):2516-2522.
[60] Kao C-L, Tai L-K, Chiou S-H, et al. Resveratrol promotes osteogenic differentiation and protects against dexamethasone damage in murine induced pluripotent stem cells [J]. Stem cells and development, 2010, 19(2):247-258.
[61] Wei G, Jin Q, Giannobile WV, et al. The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres [J]. Biomaterials, 2007, 28(12) :2087-2096.
[62] Cai YZ, Wang LL, Cai HX, et al. Electrospun nanofibrous matrix improves the regeneration of dense cortical bone [J]. Journal of Biomedical Materials Research Part A, 2010,95(1):49-57.
[63] Woo KM, Chen VJ, Jung H-M, et al. Comparative evaluation of nanofibrous scaffolding for bone regeneration in critical-size calvarial defects [J]. Tissue Engineering Part A, 2009,15(8):2155-2162.
[64] Liu H, Peng H, Wu Y, et al. The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-bmp/smad signaling pathway in bmscs [J]. Biomaterials, 2013, 34 (18) :4404-4417.

備注/Memo

備注/Memo:
基金項目:國家自然科學基金資助項目(59493300);教育部博士點基金資助項目(9800462
收稿日期: 2000-03-11;修訂日期:2000-03-06
更新日期/Last Update: 2013-10-11
免费的av网站_手机免费观看av_男人操女人下面视频_无码人妻一区二区三区一_亚洲一区二区三区四区av_色婷婷在线视频观看_第四色在线视频_国产成人精品无码片区在线_国产一级二级在线观看_日本免费网站视频
国产91丝袜美女在线播放| 动漫性做爰视频| 欧美精品在线一区二区| 一区在线观看免费| 国产成人久久精品77777最新版本| 国产毛片毛片毛片毛片毛片毛片| 欧美视频中文一区二区三区在线观看| 国产精品久久久久久久久免费丝袜 | 国产精品白丝在线| 国产精品一区在线观看你懂的| 久久久久无码精品国产sm果冻 | 欧美电影免费观看高清完整版| 午夜欧美电影在线观看| 性农村xxxxx小树林| 欧美人妖巨大在线| 亚洲va在线va天堂| 制服丝袜第一页在线观看| 7777精品久久久大香线蕉| 午夜视频在线观看一区二区三区| 欧美xxxxx少妇| 91精品国产色综合久久ai换脸| 日韩精品免费专区| 国产亚洲无码精品| 久久综合九色综合久久久精品综合| 久久国产欧美日韩精品| 亚洲一二三精品| 欧美国产精品专区| 成人高清视频在线| 欧美色视频在线观看| 亚洲国产aⅴ成人精品无吗| 中文字幕av一区二区三区人妻少妇| 欧美性感一区二区三区| 午夜国产精品一区| 色婷婷在线影院| 国产日产亚洲精品系列| 成人动漫av在线| 日本电影亚洲天堂一区| 亚洲伊人色欲综合网| 在线免费观看污视频| 精品国产乱码久久久久久闺蜜| 国产精品亚洲综合一区在线观看| 91九色丨porny丨极品女神| 亚洲精品国产高清久久伦理二区| 88av在线播放| 久久综合久久综合久久综合| 成人免费看黄yyy456| 欧美午夜一区二区三区免费大片| 天天色图综合网| 国产视频不卡在线| 亚洲免费观看在线视频| 99re久久精品国产| 中文字幕精品在线不卡| 性色av浪潮av| 欧美va亚洲va| 成人高清免费在线播放| 在线电影院国产精品| 国内精品免费**视频| 在线观看精品一区| 美美哒免费高清在线观看视频一区二区 | 亚洲男人在线天堂| 欧美国产一区二区| 精品国产乱码久久久久夜深人妻| 好吊色视频一区二区三区| 久久一区二区视频| 99re这里只有精品6| 日韩一二三四区| 国产成人亚洲综合a∨婷婷| 欧美日韩夫妻久久| 国产毛片精品视频| 欧美美女网站色| 国产乱妇无码大片在线观看| 欧美日韩中文字幕一区| 国产在线精品一区二区不卡了| 91久久精品网| 精品一区二区日韩| 欧美日韩国产天堂| 国产馆精品极品| 91精品啪在线观看国产60岁| 成人一区二区三区视频在线观看| 666欧美在线视频| 风间由美一区二区av101| 日韩一级完整毛片| 99久久99久久久精品齐齐| 亚洲精品一区二区三区蜜桃下载| 91麻豆高清视频| 国产片一区二区三区| 中文文字幕文字幕高清| 亚洲三级在线免费观看| 黄色av免费播放| 日韩精品一二三| 91极品美女在线| 国产真实乱子伦精品视频| 欧美精品电影在线播放| 成人精品在线视频观看| 久久综合精品国产一区二区三区 | 亚洲美女在线一区| 精品无码国产污污污免费网站| 亚洲视频在线一区观看| 欧美日韩一区二区三区在线| 国产主播一区二区三区| 91精品视频网| 91亚洲国产成人精品一区二区三 | 久久草av在线| 欧美精品成人一区二区三区四区| 高清不卡一区二区| 26uuu国产在线精品一区二区| 风韵丰满熟妇啪啪区老熟熟女| 中文字幕在线观看一区| 性欧美一区二区| 日韩精品一二三区| 欧美日本在线看| 91色视频在线| 综合色天天鬼久久鬼色| 色婷婷国产精品综合在线观看| 在线免费观看污视频| 亚洲欧美国产高清| 国产成人免费在线观看视频| 蜜桃av噜噜一区| 9191久久久久久久久久久| 久久综合桃花网| 1000部国产精品成人观看| 福利视频第一页| 精品无人区卡一卡二卡三乱码免费卡 | 日本japanese极品少妇| 亚洲成a人片综合在线| 欧美丝袜第三区| 国产chinesehd精品露脸| 亚洲精品成人悠悠色影视| 色婷婷激情综合| aaa国产一区| 91香蕉视频污在线| 麻豆成人综合网| 777精品伊人久久久久大香线蕉| 99久久综合精品| 亚洲视频一区在线观看| 色综合中文字幕| a级精品国产片在线观看| 中文字幕中文字幕一区| 老女人性淫交视频| 成人av中文字幕| 亚洲视频电影在线| 色婷婷综合激情| 69久久精品无码一区二区| 亚洲精品ww久久久久久p站| 91久久国产综合久久| 又黄又爽又色的视频| 亚洲国产日韩在线一区模特| 制服丝袜日韩国产| 久久精品老司机| 极品美女销魂一区二区三区免费| 久久蜜桃av一区二区天堂 | 成人黄色在线看| 亚洲美女精品一区| 欧美日韩激情一区二区| 中文字幕免费高清| 免费一级欧美片在线观看| 日韩精品一区在线| 一级黄色片网址| 国产另类ts人妖一区二区| 国产精品麻豆一区二区| 色国产精品一区在线观看| 久久精品aⅴ无码中文字字幕重口| 天堂成人国产精品一区| 精品国产乱码久久久久久蜜臀| 超碰人人干人人| 波多野结衣中文字幕一区 | 韩日精品视频一区| 欧美国产乱子伦| 欧洲一区二区av| 女同毛片一区二区三区| 国产乱妇无码大片在线观看| 综合色天天鬼久久鬼色| 制服丝袜一区二区三区| 一级黄色录像毛片| k8久久久一区二区三区| 亚洲国产精品一区二区久久| 精品国产乱码久久| 色综合色综合色综合色综合色综合| 性生交大片免费看l| 美女精品一区二区| 椎名由奈av一区二区三区| 制服丝袜av成人在线看| 国产福利在线导航| 91亚洲一线产区二线产区 | 亚洲欧美色图视频| 风间由美一区二区av101| 亚洲h在线观看| 国产色综合久久| 欧美日韩国产在线观看| 纪美影视在线观看电视版使用方法| 91在线视频观看| 久久99精品久久久久久动态图 | 精品国产髙清在线看国产毛片| 少妇影院在线观看| 国产精品嫩草av| 粉嫩绯色av一区二区在线观看| 丝袜美腿亚洲一区| 国产精品成人免费| 精品日韩一区二区| 欧美丝袜第三区|