免费的av网站_手机免费观看av_男人操女人下面视频_无码人妻一区二区三区一_亚洲一区二区三区四区av_色婷婷在线视频观看_第四色在线视频_国产成人精品无码片区在线_国产一级二级在线观看_日本免费网站视频

[1]張金偉,鄭紀(jì)勇,王利,等.仿生防污材料的研究進(jìn)展[J].中國(guó)材料進(jìn)展,2014,(2):086-94.[doi:10.7502/j.issn.1674-3962.2014.02.03]
 ZHANG Jinwei,ZHENG Jiyong,WANG Li,et al.Progress and Prospect of Antifouling Materials Based on Biomimetic Technology[J].MATERIALS CHINA,2014,(2):086-94.[doi:10.7502/j.issn.1674-3962.2014.02.03]
點(diǎn)擊復(fù)制

仿生防污材料的研究進(jìn)展()
分享到:

中國(guó)材料進(jìn)展[ISSN:1674-3962/CN:61-1473/TG]

卷:
期數(shù):
2014年第2期
頁(yè)碼:
086-94
欄目:
出版日期:
2014-02-28

文章信息/Info

Title:
Progress and Prospect of Antifouling Materials Based on Biomimetic Technology
文章編號(hào):
201402002
作者:
張金偉鄭紀(jì)勇王利許鳳玲孫智勇藺存國(guó)*
(海洋腐蝕與防護(hù)重點(diǎn)實(shí)驗(yàn)室,中國(guó)船舶重工集團(tuán)公司第七二五研究所,山東 青島 266101)
Author(s):
ZHANG Jinwei ZHENG Jiyong WANG Li XU Fengling SUN Zhiyong LIN Cunguo*
(State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266101, China)
關(guān)鍵詞:
生物污損仿生防污材料生物防污劑微結(jié)構(gòu)水凝膠、抗蛋白吸附
分類(lèi)號(hào):
O647.4
DOI:
10.7502/j.issn.1674-3962.2014.02.03
文獻(xiàn)標(biāo)志碼:
A
摘要:
船舶表面的生物污損會(huì)帶來(lái)極大的危害,如何防除生物污損已成為一個(gè)世界難題。盡管氧化亞銅等有毒防污劑可以有效防止海生物的附著污損,但這類(lèi)防污劑對(duì)非目標(biāo)生物也具有負(fù)面作用,可能帶來(lái)嚴(yán)重的生態(tài)問(wèn)題。隨著國(guó)際社會(huì)對(duì)有毒防污劑和海洋環(huán)境的日益關(guān)注,發(fā)展環(huán)境友好型防污材料已勢(shì)在必行。人們經(jīng)常觀察到自然界許多生物并沒(méi)有被其它生物種類(lèi)寄生聚居,這是因?yàn)樵谧匀唤缰猩镒陨泶嬖谥鞑幌嗤珮O為有效的防污機(jī)制,包括化學(xué)性質(zhì)、物理性質(zhì)、機(jī)械清理、生活習(xí)性,以及各種防污機(jī)制的組合等,這為研制環(huán)境友好型仿生防污材料提供了依據(jù)。本文簡(jiǎn)要綜述了海洋環(huán)境中仿生防污材料的研究進(jìn)展,重點(diǎn)介紹了基于生物防污劑、表面微結(jié)構(gòu)、水凝膠、抗蛋白吸附等特性進(jìn)行防污的仿生材料的研究,并闡述了我國(guó)在該領(lǐng)域已經(jīng)取得的重要技術(shù)突破和主要技術(shù)成果,展望了仿生防污技術(shù)的發(fā)展趨勢(shì)。
Abstract:
Biofouling on the surfaces of ship hulls can bring about some unwanted and detrimental consequences, and it has been recognized as a widespread problem. Toxic compounds, such as copper-based antifoulant, can prevent the happening of biological fouling, but they have negative impacts on non-target organisms and lead to detrimental ecological effects, thus it is necessary to develop new eco-friendly fouling-resistant materials. It is often observed that many plants and animals don’t experience biological fouling. Their antifouling methods usually come from chemical, physical, mechanical, behavioral or combinatorial mechanisms. Natural antifouling mechanisms may be used as the basis for antifouling materials, and most attention has been devoted to designs based on natural antifoulants, microtopography, hydrogel and protein-resistance. In this paper, the progress of biomimetic antifouling materials with natural antifoulants and various surface features, such as microtopography, hydrogel and protein-resistance, were introduced. Additionally, some significant research results on biomimetic antifouling materials in china were also presented, and the development trend of this field in the future was prospected.

參考文獻(xiàn)/References:

[1] Hellio C, Yebra D M. Introduction [M] // Claire H, Diego Y. Advances in Marine Antifouling Coatings and Technologies. Washington DC,Woodhead Publishing Limited, 2009: 1-16.

[2] Schultz, MP. Effects of Coating Roughness and Biofouling on Ship Resistance and Powering [J]. Biofouling, 2007 (23): 331-341.

[3] Ma Z Z, Zhou J P, et al. 防污漆對(duì)透聲性能的影響[J].Paint & Coatings Industry, 1984 (2): 10-12.

[4] Schultz M P, Bendick J A, Holm E R, et al. Economic Impact of Biofouling on a Naval Surface Ship [J]. Biofouling, 2011 (27): 87-98.

[5] Evans L V, Clarkson N. Antifouling Strategies in the Marine Environment [J]. Journal of applied bacteriology symposium supplement, 1993 (74): 119-124.

[6] Qiu J W, Thiyagarajan V, Cheung S, et al. Toxic Effects of Copper on Larval Development of the Barnacle Balanus Amphitrite [J]. Marine Pollution Bulletin, 2005 (51): 688-693.

[7] Katranitsas A, Castritsi-Catharios J, Persoone G. The Effects of A Copper-based Antifouling Paint on Mortality and Enzymatic Activity of a Non-target Marine Organism [J]. Marine Pollution Bulletin, 2003 (46): 1491-1494.

[8] Ralston E, Swain G. Bioinspiration-the Solution for Biofouling Control [J]. Bioinsp. Biomim., 2009 (4): 1-9.

[9] Qian P Y. A Brief Overview of Recent Progress in Screening for Antifouling Marine Natural Products and Studying of Their Molecular Mechanisms [J]. Chinese Bulletin of Life Sciences, 2012, 24 (9): 1026-1034.

[10] Guenther J, Walker-Smith G, Waren A, et al. Fouling-resistant Surfaces of Tropical Sea Stars [J]. Biofouling, 2007 (23): 413-418.

[11] Clare A S, Marine Natural Product Antifoulants Status and Potential [J]. Biofouling, 1996 (9): 211-219.

[12] Lewis J A. Marine Biofouling and its Prevention on Underwater Surface [J]. Materials Forum, 1998 (22): 41-61.

[13] Duan D X, Lin C G, Zheng J Y. Screen and Identification of Marine Bacteria with Antifouling Property [J]. Marine Environmental Science, 2010 (29):649-652.

[14] Zhang X, Chen X G, Duan D X, et al. Antifouling Activities of Metabolic Product Produced by Marine Bacteria [J]. Development and Application of Materials, 2013, 28(4): 26-31.

[15] Kjelleberg S, Steinberg P. Surface Warfare in the Sea [J]. Microbiology Today, 2001 (28): 134-135.

[16] Smyeniotopoulos V, Adbatis D, Tziveleka L A, et al. Acetylene Sesquiterpeniod Esters from the Green Alga Caulerpa prolifera [J]. Journal of Natural Products, 2003 (66): 21-24.

[17] Todd J S, Zimmerman R C, Crews P, et al. The Antifouling Activity of Natural and Synthetic Acid Sulphate Eaters [J]. Phytochemistry, 1993 (34): 401-404.

[18] Wisespongpand P, Kuniyoshi M. Bioactive Phlorogiucinols from the Brown Alga Zoonaria Diesingiana [J]. Journal of Applied Phycology, 2003 (15): 25-228.

[19] Yang L H, Lee O O, Jin T, et al. Antifouling Properties of 10 Beta-formamidokalihinol-A and Kalihinol a Isolated from the Marine Sponge Acanthella Cavernosa [J]. Biofouling, 2006 (22): 23-32.

[20] Tomono Y, Hirota H, Fusetani N. Isogosterones A-D, Antifouling 13, 17-Secosteroids from an Octocoral Dendronephthya sp [J]. Journal of Organic Chemistry, 1999 (64): 2272-2275.

[21] Brennan A B, Baney R H, Carman M L. Surface Topography for Non-toxic Bioadhesion Control: US, 7143709 [P]. 2006-12-05.

[22] Schumacher J F, Carman M, Estes T G, et al. Engineered Antifouling Microtopographies-effect of Feature Size, Geometry, and Roughness on Settlement of Zoospores of the Green Alga Ulva [J], Biofouling, 2007 (23): 55 -62.

[23] Magin M M, Long C J, Cooper S P, et al. Engineered Antifouling Microtopographies: the Role of Reynolds Number in a Model that Predicts Attachment of Zoospores of Ulva and Cells of Cobetia marina [J]. Biofouling, 2010 (26): 719-727.

[24] Rosenhahn A, Ederth T, Pettitt M E. Advanced Nanostructures for the Control of Biofouling: the FP6 Integrated Project AMBIO [J]. Biointerphases, 2008 (3): 1-5.

[25] Zheng J Y, Lin C G, Zhang J W, et al. Antifouling Performance of Surface Microtopographies Based on Sea Star Luidia quinaria [J]. Key Engineering Materials, 2013 (562-565): 1290-1295.

[26] Scardino A J, Harvey E, de Nys R. Testing Attachment Point Theory: Diatom Attachment on Microtextured Polyimide Biomimics [J]. Biofouling, 2006 (22): 55-60.

[27] Scardino A J, Harvey E, de Nys R. Attachment Point Theory Revisited: The Fouling Response to A Microtextured Matrix [J]. Biofouling, 2008 (24):45-53.

[28] Long C J, Schumacher J F, Robinson P A, et al. A Model that Predicts the Attachment Behavior of Ulva linza Zoospores on Surface Topography [J]. Biofouling, 2010 (26): 411-419.

[29] Decker J T, Chelsea M K, Long C J, et al. Engineered Antifouling Microtopographies: an Energetic Model that Predicts Cell Attachment [J]. Langmuir, 2013 (29): 13023-13030.

[30] Han X, Zhang D Y. Replication of Shark Skin Based on Micro-electroforming [J]. Transactions of the Chinese Society for Agricultural Machinery, 2011 (42): 229-234.

[31] Wang L, Lin C G, Yang L H, et al. Preparation of Nano/micro-scale Column-like Topography on PDMS Surfaces via Vapor Deposition: Dependence on Volatility Solvents [J]. Applied Surface Science, 2011 (258): 265-269.

[32] Liu H L, Hu Y. Microphas Seperation and Stucture Evolution of Complex Materials [J].CIESC Journal, 2003 (54): 440-447.

[33] Ucar I O, Cansoy C E, Erbil H Y, et al. Effect of Contact Angle Hysteresis on the Removal of the Sporelings of the Green Alga Ulva from the Fouling-release Coatings Synthesized from Polyolefin Polymers [J]. Biointerphases, 2010 (5): 75-84.

[34] Rasmussen K, Willemsen P R. ?stgaard K. Barnacle Settlement on Hydrogels [J]. Biofouling, 2002 (18): 177-191.

[35] Ekblad T, Bergström G, Ederth T, et al. Poly(ethylene glycol)-containing Hydrogel Surfaces for Antifouling Applications in Marine and Freshwater Environments [J]. Biomacromolecules, 2008 (9): 2775-2783.

[36] Zhang J W, Lin C G, Shao J J, et al. Preparation and Application of Poly(Acrylamide-Silicone) Antifouling Copolymer [J]. Modern Paint and Finishing, 2008 (11): 9-11.

[37] Zhang J W, Lin C G, Zhou J, et al. Influence of Polyacrylamide Modified Silicone on Adhesion of Diatom and Mussels [J]. Marine Enviromental Science, 2010 (29): 904-907.

[38] Lin C G, Zhang J W, Wang L, et al. Study on Fouling-resistant Performance Improvement of Silicone-based Coating with Poly(Acrylamide-Silicone) [J]. Int. J. Electrochem. Sci., 2013 (8): 6478-6492.

[39] Krishnan S, Ayothi R, Hexemer A, et al. Anti-biofouling Properties of Comblike Block Copolymers with Amphiphilic Side Chains [J]. Langmuir, 2006 (22): 5075-5086.

[40] Lind J L, Heimann K, Miller E A, et al. Substratum Adhesion and Gliding in a Diatom are Mediated by Extracellular Proteoglycans [J]. Planta, 1997 (203): 213-217.

[41] Zhang Z, Chao T, Chen S F, et al. Superlow Fouling Sulfobetaine and Carboxybetaine Polymers on Glass Slides [J]. Langmuir, 2006 (22): 10072-10077.

[42] Feng W, Zhu S P, Ishihara K, et al. Adsorption of Fibrinogen and Lysozyme on Silicon Grafted with Poly(2-methacryloyloxyethyl phosphorylcholine) via Surface Initiated Atom Transfer Radical Polymerization [J]. Langmuir, 2005 (21): 5980-5987.

[43] Chang Y, Chen S F, Zhang Z, et al. Highly Protein Resistant Coatings from Well-defined Diblock Copolymers Containing Sulfobetaines [J]. Langmuir, 2006 (22): 2222-2226.

[44] Zhang Z, Chen S F, Chang Y, et al. Surface Grafted Sulfobetaine Polymers via Atom Transfer Radical Polymerization as Superlow Fouling Coatings [J]. Journal of Physical Chemistry B, 2006 (110): 10799-10804.

[45] Zhang Z, Chen S F, Jiang SY. Dual-functional Biomimetic Materials: Nonfouling Poly(carboxybetaine) with Active Functional Groups for Protein Immobilization [J]. Biomacromolecules, 2006 (7): 3311-3315.

[46] He Y, Hower J, Chen S F, et al. Molecular Simulation Studies of Protein Interactions with Zwitterionic Phosphorylcholine Self-assembled Monolayers in the Presence of Water [J]. Langmuir, 2008 (24): 10358-10364.

[47] Chen S F, Zhang J, Li L Y, et al. Strong Resistance of Phosphorylcholine Self-assembled Monolayers to Protein Adsorption: Insights into Nonfouling Properties of Zwitterionic Materials [J]. J. Am. Chem. Soc., 2005 (127): 14473-14478.

[48] Zhang H, Wang H, Lin C G, et al. Molecular Dynamics Simulations of Surface Hydration Layers Near Non-fouling Polymer Membranes [J]. A cta Chim. Sinica., 2013 (71): 649-656.

[49] Zhang H, Hu L M, Lin C G, et al. Molecular Dynamics Simulation of Interaction between Lysozyme and Non-fouling Polymer Membranes [J]. Acta. Polymerica. Sinica., 2014 (0): 99-106.

[50] Moro T, Takatori Y, Ishihara K, et al. Surface Grafting of Artificial Joints with a Biocompatible Polymer for Preventing Periprosthetic Osteolysis [J]. Nature Materials, 2004 (3): 829-836.

[51] Xu F L, Lin C G , Zhang J W, et al. Poly(sulfobetaine methacrylate)-modified Dimethylpolysiloxane with Improved Antibiofouling Property [J]. Asian Journal of Chemistry, 2013 (25): 8011-8013.

[52] Phillippi A L, Surface Flocking as a Possible Anti-biofoulant [J]. Aquaculture Science, 2001(195): 225-238.

[53] Ma M, Hill R M. Superhydrophobic Surfaces [J]. Current Opinion in Colloid and Interface Science, 2006 (11): 193-202.

[54] Zhang J W, Lin C G, Wang L, et al. The Influence of Water Contact Angle on the Colonization of Diatoms (Navicula sp and Pinnularia sp) and Ulva Spores (Pertusa) [J]. Key Engineering Materials, 2013 (562-565): 1229-1233.

[55] Becker K. Attachment Strength and Colonization Patterns of Two Macrofouling Species on Substrata with Different Surface Tension [J]. Marine biology, 1993(117): 301-309.

[56] Zhao Q. Tailored Surface Free Energy of Membrane Diffusers to Minimize Microbial Adhesion [J]. Appli. Surf. Sci., 2004 (230): 371-378.

[57] Brady R F J, Singer I L. Mechanical Factors Favoring Release from Fouling Release Coating [J]. Biofouling, 2000 (15): 73-81.

[58] Sun Y, Guo S, Walker G C, et al. Surface Elastic Modulus of Barnacle Adhesive and Release Characteristics from Silicone Surfaces [J]. Biofouling, 2004 (20): 279-289.

[59] Chung J Y, Chaudhury M K. Soft and Hard Adhesion [J]. J. Adhesion, 2005 (81): 1119-1145.

[60] Zhang J W, Lin C G, Wang L, et al. The Influence of Elastic Modulus on the Adhesion of Fouling Organism to Poly(dimethylsiloxane) (PDMS) [J]. Advanced Materials Research, 2011 (152-153): 1466-1470.

[61] Finlay J A. The Influence of Surface Wettability on the Adhesion Strength of Settled Spores of the Green Alga Enteromorpha and the Diatom Amphora [J]. INTEGR. COMP. BIOL., 2002 (42): 1116-1122.

[62] Aldred N. Mussel (Mytilus edulis) Byssus Deposition in Response to Variations in Surface Wettability [J]. J. R. Soc. Interface, 2006 (22): 37-43.

[63] Holland R, Dugdale T, Wetherbee R, et al. Adhesion and Motility of Fouling Diatoms on a Silicone Elastomer [J]. Biofouling, 2004(20): 323-329.

[64] Stafslien S, Daniels J, Christianson B. Combinatorial Materials Research Applied to the Development of New Surface Coatings III. Utilisation of a High-throughput Multiwell Plate Screening Method to Rapidly Assess Bacterial Biofilm Retention on Antifouling Surfaces [J]. Biofouling, 2007 (23): 37-44.

[65] Casse F, Stafslien S, Bahr J A, et al. Combinatorial Materials Research Applied to the Development of New Surface Coatings V: Application of a Spinning Water-jet for the Semi-high Throughput Assessment of the Attachment Strength of Marine Fouling Algae [J]. Biofouling, 2007 (23): 121-130.

[66] Watermann B T, Dadhne B, Sievers S, et al. Bioassays and Selected Chemical Analysis of Biocide-free Antifouling Coatings [J]. Chemosphere, 2005 (60): 1530-1541.

[67] Rittschofa D, Orihuelaa B, Stafslienb S. Barnacle Reattachment: a Tool for Studying Barnacle Adhesion [J]. Biofouling, 2008 (24): 1-9.

[68] Kim J, Nyren-Erickson E, Stafslien S. Release Characteristics of Reattached Barnacles to Non-toxic Silicone Coatings [J]. Biofouling, 2008 (24): 313–319.

[69] Zhang J W, Lin C G, Wang L, et al. Study on the Correlation of Lab Assay and Field Test for Fouling-release Coatings [J]. Progress in Organic Coatings, 2013 (76): 1430-1434.

更新日期/Last Update: 2014-02-13
免费的av网站_手机免费观看av_男人操女人下面视频_无码人妻一区二区三区一_亚洲一区二区三区四区av_色婷婷在线视频观看_第四色在线视频_国产成人精品无码片区在线_国产一级二级在线观看_日本免费网站视频
色天使久久综合网天天| 日韩精品一区二区三区视频| 久久久www成人免费无遮挡大片| 偷拍日韩校园综合在线| 色婷婷狠狠18禁久久| 日本福利一区二区| 国产精品理论在线观看| 国产成人精品综合在线观看| www成人啪啪18软件| 欧美精品一区男女天堂| 美国十次了思思久久精品导航| 中文字幕精品久久久| 3atv在线一区二区三区| 亚洲成人av在线电影| 色婷婷精品久久二区二区密| 91精品国产综合久久久蜜臀粉嫩| 亚洲v中文字幕| 国产真实乱人偷精品| 欧美一区二区女人| 蜜臀久久99精品久久久久宅男| 欧美 日本 国产| 日韩女优制服丝袜电影| 青青青伊人色综合久久| 中文字幕 亚洲一区| 精品日韩成人av| 国内外精品视频| 美女三级黄色片| 亚洲天堂2014| 久久久久中文字幕亚洲精品| 欧美日韩电影在线播放| 日韩电影在线一区二区三区| 公侵犯人妻一区二区三区| 久久久国际精品| 成人激情图片网| 91福利精品第一导航| 午夜影院久久久| 中文字幕第20页| 亚洲国产精品激情在线观看| www.日韩大片| 欧美电影在哪看比较好| 日韩高清一区二区| 超薄肉色丝袜一二三| 成人欧美一区二区三区白人 | 日韩专区一卡二卡| 高潮毛片无遮挡| 久久精品欧美日韩| 99久免费精品视频在线观看| 日本精品一级二级| 午夜成人在线视频| 欧美一区二区三区粗大| 国产精品午夜在线| 91亚洲永久精品| 欧美一区二区视频在线观看2022| 九九视频精品免费| 男人操女人的视频网站| 亚洲成a人v欧美综合天堂| 在线免费观看麻豆| 中文字幕一区av| 中文字幕一区二区久久人妻网站 | 日韩码欧中文字| 先锋资源av在线| 日本一区二区三区四区| 99在线精品一区二区三区| 91精品中文字幕一区二区三区| 麻豆成人综合网| 在线观看视频91| 久久99久久精品| 色狠狠色狠狠综合| 美脚の诱脚舐め脚责91| 91福利小视频| 国模少妇一区二区三区| 欧美日韩一区 二区 三区 久久精品| 久久精品国产77777蜜臀| 色呦呦国产精品| 精品亚洲porn| 欧美高清激情brazzers| 国产不卡在线播放| 欧美高清视频不卡网| 国产91精品久久久久久久网曝门| 538prom精品视频线放| 成人一区二区三区视频在线观看| 欧美疯狂做受xxxx富婆| 国产成人精品亚洲777人妖 | 99精品国产视频| 2欧美一区二区三区在线观看视频| 成人精品鲁一区一区二区| 欧美第一区第二区| 91视频免费观看| 国产三级久久久| 美女又爽又黄视频毛茸茸| 亚洲免费在线观看| jizzjizzjizz国产| 午夜国产不卡在线观看视频| 国产高潮流白浆| 九色porny丨国产精品| 欧美日本在线播放| youjizz国产精品| 久久久久久久综合| 中文字幕在线播放视频| 一区二区三区日韩| 中文字幕在线2021| 国产精品资源网| 欧美成人伊人久久综合网| 精品人妻一区二区乱码| 国产精品乱码一区二区三区软件| 精品成人av一区二区三区| 亚洲h动漫在线| 91久久香蕉国产日韩欧美9色| 国产一区999| 亚洲精品一区二区三区福利| 日本一级片在线播放| 亚洲精品国产品国语在线app| 91麻豆精品成人一区二区| 久99久精品视频免费观看| 欧美一区二区三区在线观看视频 | 免费中文字幕在线| 国产风韵犹存在线视精品| 精品欧美一区二区久久| 国产精品久久不卡| 婷婷久久综合九色综合绿巨人| 欧美性受xxxx| 91在线视频18| 亚洲精品第1页| 色就色 综合激情| 99久久国产免费看| 日韩美女久久久| 日本久久电影网| 91麻豆精品一区二区三区| 亚洲欧洲日产国产综合网| 欧美日韩黄色网| 成人丝袜18视频在线观看| 国产精品欧美经典| www.97视频| hitomi一区二区三区精品| 日韩毛片视频在线看| 91久久国产综合久久| 成人高清伦理免费影院在线观看| 国产精品久久久久久久第一福利| 91n在线视频| 成人av一区二区三区| 自拍偷拍亚洲综合| 欧美伊人精品成人久久综合97| 99这里只有精品| 亚洲欧洲制服丝袜| 印度午夜性春猛xxx交| 成人动漫一区二区在线| 亚洲美女偷拍久久| 欧美日韩视频在线第一区| 欧亚乱熟女一区二区在线| 日本一不卡视频| 欧美电影免费观看高清完整版在线| 黄色a一级视频| 麻豆成人免费电影| 国产精品天干天干在观线| 91九色丨porny丨极品女神| 99精品欧美一区二区蜜桃免费| 一个色综合网站| 日韩三级精品电影久久久| 国产精品亚洲无码| 国产精品996| 亚洲视频每日更新| 欧美精品日韩一本| 青青草成人免费视频| 日本午夜一区二区| 久久久精品黄色| 91高清在线观看| 欧美精品黑人猛交高潮| 国产精品综合网| 一区二区在线观看av| 欧美一区在线视频| 国产精品综合激情| 91美女在线视频| 青青草国产精品97视觉盛宴| 欧美高清在线一区二区| 欧美在线999| 中文在线永久免费观看| 国产精品一区二区黑丝| 一区二区三区在线观看欧美| 欧美xxxx老人做受| 国产盗摄x88av| 国产又黄又粗又猛又爽的视频 | 老司机成人免费视频| 无码人妻久久一区二区三区蜜桃| 毛片不卡一区二区| 亚洲视频小说图片| 日韩视频免费观看高清完整版在线观看| 国产欧美小视频| 人妻激情偷乱视频一区二区三区| 青青草97国产精品免费观看| 国产精品国产三级国产aⅴ中文 | 久久一区二区视频| 色爱区综合激月婷婷| 国产成人精品无码免费看夜聊软件| 成人听书哪个软件好| 男男视频亚洲欧美| 国产精品久久久久影视| 日韩欧美综合在线| 色综合久久九月婷婷色综合| 欧美特黄一区二区三区| 无码人妻少妇色欲av一区二区|