[1]王倍洲,王有偉,劉建軍,等.鋰空氣電池正極界面催化反應機理[J].中國材料進展,2015,(12):056-60.[doi:10.7502/j.issn.1674-3962.2015.12.11]
WANG Beizhou,WANG Youwei,LIU Jianjun,et al.Catalytic Reaction Mechamism in the Positive Electrode Interface of Lithium Air Battery[J].MATERIALS CHINA,2015,(12):056-60.[doi:10.7502/j.issn.1674-3962.2015.12.11]
點擊復制
鋰空氣電池正極界面催化反應機理(
)
中國材料進展[ISSN:1674-3962/CN:61-1473/TG]
- 卷:
-
- 期數:
-
2015年第12期
- 頁碼:
-
056-60
- 欄目:
-
特約研究論文
- 出版日期:
-
2015-12-25
文章信息/Info
- Title:
-
Catalytic Reaction Mechamism in the Positive Electrode Interface of Lithium Air Battery
- 作者:
-
王倍洲1; 2; 王有偉2; 劉建軍2; 陸文聰1
-
(1. 上海大學化學系
(2.中國科學院上海硅酸鹽研究所 高性能陶瓷和超微結構國家重點實驗室
- Author(s):
-
WANG Beizhou1; 2; WANG Youwei2; LIU Jianjun2; LU Wencong1
-
(1. Department of Chemistry, College of Sciences, Shanghai University,
(2. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics,
Chinese Academy of Sciences
-
- 關鍵詞:
-
鋰空氣電池; 氧還原反應; 析氧反應; 催化機理; 界面催化; 第一性原理計算
- DOI:
-
10.7502/j.issn.1674-3962.2015.12.11
- 文獻標志碼:
-
A
- 摘要:
-
高比能量鋰空氣電池是未來大容量純電動汽車潛在的動力電源技術之一,然而由于充放電動力學速率低限制了其實際性能的提升,導致其充電過電位高、循環性能差、電流密度低、電極材料不穩定、電解質分解等問題。發展高活性的氧還原與析氧催化劑是鋰空氣電池研究的熱點。單純地通過實驗觀測過氧化鋰在電極催化表面的形成與分解反應有很大挑戰,利用第一性原理計算與實驗相結合揭示催化反應機理、探求新型高效催化劑受到廣泛重視。綜述了催化劑與過氧化鋰相互作用,建立電荷轉移、界面結構、吸附能與催化活性之間關系,進而揭示了高活性氧還原與析氧反應催化劑的特征結構,通過催化劑的表面微觀結構設計與晶體結構計算預測發展新型高活性催化劑,以改善鋰空氣電池電化學性能。
- Abstract:
-
The Li-Air battery with high energy density is considered as one of important energy storage technologies which can be applied in electric vehicles. However, the practical application of Li-Air battery is currently prevented by the slow kinetic rates of discharge/charge reactions, which further results in many electrochemical problems such as high overpotential, poor cyclic performance, low current density, unstable electrodes, and electrolyte decomposition. Developing highly active catalysts in oxygen reduction (ORR) and oxygen evolution (OER) reactions is a hot research topic of Li-Air battery. Directly observing these reactions mechanisms is a challenging task since they occur in the interface between cathodes and Li2O2. The experimental techniques and first-principles calculations are used to reveal catalytic reaction mechanism and develop novel high active catalysts, which have become increasingly important. Herein, we review the interfacial interaction between catalyst and Li2O2 with the aim to make a correlation of catalytic activity with electron transfer, interfacial structure, and adsorption energy of O2 and Li2O2. These discussions are helpful to reveal catalytic descriptor of ORR and OER, design catalytic surface structure and predict new crystal structure, and improve electrochemical performance.
更新日期/Last Update:
2015-12-29