[1]黃輝庭、李朝升、鄒志剛.探索優化光電極中載流子傳輸的策略[J].中國材料進展,2017,(1):016-20.[doi:10.7502/j.issn.1674-3962.2017.01.05]
HUANG Huiting,LI Zhaosheng,ZOU Zhigang.Development of approaches to improve the charge transfer of photoelectrodes for solar water splitting[J].MATERIALS CHINA,2017,(1):016-20.[doi:10.7502/j.issn.1674-3962.2017.01.05]
點擊復制
探索優化光電極中載流子傳輸的策略(
)
中國材料進展[ISSN:1674-3962/CN:61-1473/TG]
- 卷:
-
- 期數:
-
2017年第1期
- 頁碼:
-
016-20
- 欄目:
-
前沿綜述
- 出版日期:
-
2017-01-31
文章信息/Info
- Title:
-
Development of approaches to improve the charge transfer of photoelectrodes for solar water splitting
- 作者:
-
黃輝庭、李朝升、鄒志剛
-
南京大學
- Author(s):
-
HUANG Huiting; LI Zhaosheng; ZOU Zhigang
-
Nanjing University
-
- 關鍵詞:
-
光電極; 太陽能; 水分解; 載流子傳輸
- Keywords:
-
photoelectrodes; solar energy; water splitting; solar-to-hydrogen efficiency; charge transfer
- DOI:
-
10.7502/j.issn.1674-3962.2017.01.05
- 文獻標志碼:
-
A
- 摘要:
-
將太陽能轉化成氫能來發展氫能源經濟是人類社會可持續發展的必由之路。光電化學分解水制氫是太陽能-氫能轉換中具有重要應用前景的技術。經過近五十年的發展,光電化學分解水制氫技術遇到了瓶頸,主要是缺乏高效穩定的光電極。近年來,通過沉積TiOx保護層的策略,部分光電極的穩定性得到了顯著提升,因此,提高光電極的太陽能-氫能轉換效率成為一項更為重要的任務。其中,改善光電極載流子傳輸能夠有效地提高太陽能-氫能轉換效率。本文著重討論了幾種改善光電極中載流子傳輸的策略,包括制備有利于載流子擴散和遷移的納米結構;通過摻雜提高材料的導電性;通過制備工藝的優化減少阻礙載流子傳輸的缺陷;構建半導體結;使用與材料多子輸運匹配的導電襯底或引入少子阻隔層等。
- Abstract:
-
The sustainable development of society will depend on the hydrogen economic, which should be based on the conversion of solar energy. Photoelectrochemical water splitting has become one of the most promising solar-to-hydrogen convert techniques. After near five-decade research, this technique has been in dilemma, mainly resulting from the lack of highly efficient and stable photoelectrodes. In recent years, the stability of photoelectrodes under operation seems to be resolve by the introduction of robust TiOx protective layer, which means that ways to enhancing the solar-to-hydrogen efficiency of photoelectrodes should be developed preferentially towards the realization of solar water splitting. Improvement of the charge transfer of the photoelectrodes would lead to the enhancement of the solar-to-hydrogen efficiency. Here, several main strategies for the optimization of charge transfer has been summarized. It is by the fabrication of micro/nano structure facilitating charge diffuse and drift, the introduction of dopants increasing the conductivity, the optimization of synthesis procedures minimizing the charge recombination defects, the construction of semiconductor junctions and the best choice of suitable substrates for the majority charge transport or the deposition of under layers that the photoelectrochemical performance of the given photoelectrode would be boosted.
更新日期/Last Update:
2016-12-26