[1]劉 琦,劉 森,龍世兵,等.陽離子基阻變存儲器的研究進展[J].中國材料進展,2017,(2):006-10.[doi:10.7502/j.issn.1674-3962.2017.02.01]
LIU Qi,LIU Sen,LONG Shibing,et al.Progress of Cation-Based Resistive Random Access Memory[J].MATERIALS CHINA,2017,(2):006-10.[doi:10.7502/j.issn.1674-3962.2017.02.01]
點擊復(fù)制
陽離子基阻變存儲器的研究進展(
)
中國材料進展[ISSN:1674-3962/CN:61-1473/TG]
- 卷:
-
- 期數(shù):
-
2017年第2期
- 頁碼:
-
006-10
- 欄目:
-
前沿綜述
- 出版日期:
-
2017-02-28
文章信息/Info
- Title:
-
Progress of Cation-Based Resistive Random Access Memory
- 作者:
-
劉 琦; 劉 森; 龍世兵; 呂杭炳; 劉 明
-
中國科學(xué)院微電子研究所
- Author(s):
-
LIU Qi; LIU Sen; LONG Shibing; LV Hangbing; LIU Ming
-
Institute of Microelectronics, Chinese Academy of Sciences
-
- 關(guān)鍵詞:
-
非易失存儲器; 阻變存儲器; 固態(tài)電解液; 電化學(xué)效應(yīng); 導(dǎo)電細絲
- Keywords:
-
nonvolatile memory; resistive switching memory; solidstateelectrolyte; electrochemical effect; conductive filament
- DOI:
-
10.7502/j.issn.1674-3962.2017.02.01
- 文獻標志碼:
-
A
- 摘要:
-
基于電荷存儲的傳統(tǒng)非易失存儲技術(shù)越來越難以滿足大數(shù)據(jù)時代對海量信息的存儲需求,亟需發(fā)展基于新材料、新原理的非易失存儲技術(shù)。基于陽離子電化學(xué)效應(yīng)的阻變存儲器具有結(jié)構(gòu)簡單、速度快、功耗低、可縮小性好、易于三維集成等優(yōu)點,被認為是下一代非易失存儲器的有力競爭者。然而,器件參數(shù)離散性大以及阻變機制不清晰嚴重阻礙了該類器件的快速發(fā)展。近幾年,國內(nèi)外學(xué)者通過材料和結(jié)構(gòu)的優(yōu)化設(shè)計顯著提高了器件的性能,借助先進的表征技術(shù)闡明了器件電阻轉(zhuǎn)變的微觀機制,為陽離子基阻變存儲器的大規(guī)模生產(chǎn)和應(yīng)用奠定了科學(xué)基礎(chǔ)。從材料改性、器件結(jié)構(gòu)設(shè)計和微觀機制表征三個方面綜述了陽離子基阻變存儲器的研究進展,并對其未來的研究方向和發(fā)展趨勢進行了展望。
- Abstract:
-
The traditional charge-based nonvolatile memory technology is hardly satisfying to the tremendous storage requirement of mass data information in the big data era. Hence, it is urgent to develop nonvolatile storage technology based on new materials and mechanisms.Resistive Random Access Memory (RRAM), based on electrochemical metallization effect, is considered to be a strong competitor for the next generation nonvolatile memory due to its outstanding performance, including simple structure, fast speed, low power, excellent scalability and three-dimensions integration. However, some disadvantages such as the large dispersion of RRAM parameters and the unclear switching mechanism obstacle the real application of RRAM. Recently, the devices performance has been greatly improved by optimization of RRAM materials and device structure, and the microscopic mechanism of resistive switching has been deeply understood with advanced in-situ characterization techniques. In this review, we sum and discuss the recent research progress of cation-based RRAM from three aspects: material optimization, device structure design and physical mechanism illustration. Finally, we predict and outlook the future research direction and development trend of cation-based RRAM.
更新日期/Last Update:
2017-01-20