[1]趙揚(yáng),彭鳴,譚勇文.三維自支撐電極在析氫反應(yīng)中的研究進(jìn)展[J].中國材料進(jìn)展,2018,(04):001-13.[doi:10.7502/j.issn.1674-3962.2018.04.01]
ZHAO Yang,PENG Ming,TAN Yongwen*.Research Progress on Three Dimensional Self-supporting Electrodes in Hydrogen Evolution Reaction[J].MATERIALS CHINA,2018,(04):001-13.[doi:10.7502/j.issn.1674-3962.2018.04.01]
點(diǎn)擊復(fù)制
三維自支撐電極在析氫反應(yīng)中的研究進(jìn)展
(
)
中國材料進(jìn)展[ISSN:1674-3962/CN:61-1473/TG]
- 卷:
-
- 期數(shù):
-
2018年第04期
- 頁碼:
-
001-13
- 欄目:
-
特約研究論文
- 出版日期:
-
2018-04-30
文章信息/Info
- Title:
-
Research Progress on Three Dimensional Self-supporting Electrodes in Hydrogen Evolution Reaction
- 作者:
-
趙揚(yáng); 彭鳴; 譚勇文
-
湖南大學(xué)材料科學(xué)與工程學(xué)院
- Author(s):
-
ZHAO Yang; PENG Ming; TAN Yongwen*
-
Department of Materials science and Engineering, Hunan University
-
- 關(guān)鍵詞:
-
電解水; 析氫反應(yīng); 三維材料; 自支撐; 納米多孔
- Keywords:
-
water splitting; hydrogen evolution reaction; three-dimensional materials; self-supporting; nanoporous
- DOI:
-
10.7502/j.issn.1674-3962.2018.04.01
- 文獻(xiàn)標(biāo)志碼:
-
A
- 摘要:
-
氫能作為一種清潔、高能量密度、無二次污染的“綠色能源”,被認(rèn)為是解決當(dāng)今環(huán)境和能源危機(jī)的理想能源之一。本文從能源危機(jī)大背景、電解水析氫機(jī)理以及電極活性評價方法出發(fā),以三維襯底輔助自支撐材料為基礎(chǔ),總結(jié)了三維金屬襯底材料,三維碳襯底材料在析氫領(lǐng)域的發(fā)展。結(jié)合課題組在電解水方面的研究工作,重點(diǎn)綜述了無襯底(三維納米多孔材料)自支撐材料在電解水制氫方面的應(yīng)用進(jìn)展。主要介紹了各類析氫催化劑的合成方法和性能提高的策略,重點(diǎn)探討了催化材料的結(jié)構(gòu)設(shè)計(jì)與形貌調(diào)控對析氫性能的影響,最后,對電解水析氫催化劑面臨的挑戰(zhàn)和未來的發(fā)展方向進(jìn)行了展望。
- Abstract:
-
As a "green energy" with clean, high energy density and no secondary pollution, hydrogen is considered as one of the ideal energy sources to solve the current environmental and energy crisis. Firstly, we introduced the hydrogen evolution mechanism and the evaluation method of electrode activity, and then, summarized the development of three-dimensional metal/carbon substrate materials in the field of hydrogen evolution. Combined with our work in electrolytic water, we highlighted the recent application of self-supporting material (three-dimensional nanoporous material) in hydrogen production. In addition, emphasis was given to the synthesis methods of HER electrocatalysts and the strategies for performance improvement, meanwhile, the
structural design and morphology control of various types of catalytic materials is discussed. Finally, we prospect the challenges and research directions of HER catalysts in the future.
更新日期/Last Update:
2018-03-29