[1]孫巧艷,杜勇,劉立斌,等. 高性能鈦合金的關鍵“基因”及高通量實驗與計算技術的應用[J].中國材料進展,2018,(04):057-63.[doi:10.7502/j.issn.1674-3962.2018.04.07]
SUN Qiaoyan,DU Yong,LIU Libin,et al.Key Material Genome of Titanium Alloys and Application of High Throughput Experiment and Computation[J].MATERIALS CHINA,2018,(04):057-63.[doi:10.7502/j.issn.1674-3962.2018.04.07]
點擊復制
高性能鈦合金的關鍵“基因”及高通量實驗與計算技術的應用
(
)
中國材料進展[ISSN:1674-3962/CN:61-1473/TG]
- 卷:
-
- 期數:
-
2018年第04期
- 頁碼:
-
057-63
- 欄目:
-
前沿綜述
- 出版日期:
-
2018-04-30
文章信息/Info
- Title:
-
Key Material Genome of Titanium Alloys and Application of High Throughput Experiment and Computation
- 作者:
-
孫巧艷1; 杜勇2; 劉立斌2; 胡青苗3; 肖林1; 孫軍1
-
1.西安交通大學 金屬材料強度國家重點實驗室,陜西 西安 710049 2.中南大學 粉末冶金國家重點實驗室,湖南 長沙 410083 3.中國科學院金屬研究所 沈陽材料科學國家實驗室,遼寧 沈陽 110016
- Author(s):
-
SUN Qiaoyan1; DU Yong2; LIU Libin2; HU Qingmiao3; XIAO Lin1; SUN Jun1
-
1.State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China 2.State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, China 3.Institute of Metal Research, Chinese Academy of Sciences, Shenyang National Laboratory for Materials Science, Shenyang 110016, China
-
- 關鍵詞:
-
鈦合金; 高通量實驗與計算; 微觀組織; 力學性能; 材料基因
- Keywords:
-
titanium alloys; high throughput experiments and computation; microstructure; mechanical properties; materials genome
- DOI:
-
10.7502/j.issn.1674-3962.2018.04.07
- 文獻標志碼:
-
A
- 摘要:
-
加快高性能鈦合金的研發速度、降低研發成本對我國高端裝備制造至關重要。作為關鍵結構材料,強度、塑性與韌性是保障鈦合金構件安全運行的關鍵力學性能指標。通過高通量計算可預測合金的模量、比熱、熱膨脹系數等多種物理性能指標,但是對于強度、塑性與韌性等力學性能指標尚缺少預測模型和公式,原因是力學性能間接依賴合金的化學成分,直接影響力學性能的因素是合金的微觀組織。高性能鈦合金的關鍵“基因”是成分、相/組織結構與晶體缺陷。高通量計算和擴散多元節建立合金成分與相的對應關系,相場動力學計算與模擬實現對相與微觀組織演化的預測,通過微納尺度力學性能測試技術獲得微觀組織結構的力學性能數據。期望通過以上各環節研究結果與數據的有機整合,建立鈦合金成分、相與微觀組織、力學性能數據庫,有助于提升高性能鈦合金的研發速度,滿足我國關鍵技術領域對先進鈦合金的需求。
- Abstract:
-
To accelerate researching newtype titanium alloys with improved mechanical properties and to lower cost at the same time are very important for the advanced equipments of our country. As structural material, strength, ductility and toughness are key factors for performance of structural parts. Some physical properties, such as elastic modulus, heat conductivity, diffusion coefficient, thermal expansion coefficient and specific heat, have been calculated or measured with highthroughput computation and experiments. However, mechanical properties, such as strength, ductility and toughness, cannot be calculated with computational methods due to lack of models and enough data. The mechanical properties are much more dependent on microstructures than compositions. Therefore, the key genes for advanced titanium alloys are compositions, phases/microstructures and defects of crystals. The relationship between chemical composition and phase can be founded with firstprinciples calculation, and dependence of phase on composition can be measured with diffusionmultiple approach efficiently. Microstructural evolution can be predicted with phasefield models. The mechanical properties of individual unit of microstructures can be measured with nanomechanical methods, such as nano indentation and compressive or tensile methods. The above results and data should be integrated into database for titanium alloys and be used to accelerate researching newtype titanium alloys to meet great needs of advanced titanium alloys in key industrial fields of our country.
更新日期/Last Update:
2018-05-08