[1]董國艷,喬鵬武,李振飛.光子帶隙超材料研究進展[J].中國材料進展,2019,(01):022-29.[doi:10.7502/j.issn.1674-3962.2019.01.03]
DONG Guoyan,QIAO Pengwu,LI Zhenfei.Research Progress of PhotonicBandgap Metamaterials[J].MATERIALS CHINA,2019,(01):022-29.[doi:10.7502/j.issn.1674-3962.2019.01.03]
點擊復制
光子帶隙超材料研究進展(
)
中國材料進展[ISSN:1674-3962/CN:61-1473/TG]
- 卷:
-
- 期數:
-
2019年第01期
- 頁碼:
-
022-29
- 欄目:
-
前沿綜述
- 出版日期:
-
2019-01-29
文章信息/Info
- Title:
-
Research Progress of PhotonicBandgap Metamaterials
- 作者:
-
董國艷; 喬鵬武; 李振飛
-
(中國科學院大學 光電學院,北京 101408)
- Author(s):
-
DONG Guoyan; QIAO Pengwu; LI Zhenfei
-
School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 101408,China
-
- 關鍵詞:
-
光子帶隙; 光子晶體; 超材料; 光拓撲態; 零折射率
- Keywords:
-
photonic bandgap; photonic crystal; metamaterial; optical topological state; zero refractive index
- DOI:
-
10.7502/j.issn.1674-3962.2019.01.03
- 文獻標志碼:
-
A
- 摘要:
-
光子帶隙超材料是一種可用于控制和操縱光傳導的極具吸引力的人造材料,通常是由周期性電介質、金屬、超導體等組合而成的微結構或納米結構。光子帶隙可理解為在晶體中傳播的光在高、低介電常數區域的界面處發生多次反射而干涉相消,類似于固體物理中的電子帶隙。針對近年來光子帶隙超材料研究領域的幾個熱門方向——光子晶體光纖、光學拓撲態、Dirac點零折射率和帶隙調制發光,從凝聚態物理學理論出發,通過與電子帶隙和Dirac方程理論的比較和拓展,詳細介紹了介質基光子晶體、光拓撲絕緣體、Dirac點多重簡并、金屬和發光材料與光子晶體構成的復合光子帶隙超材料的研究進展和應用現狀。光子帶隙超材料靈活可調控的光學特性不但可以用于設計更高品質的傳統光學器件,還可以獲得自然界中不存在的奇特屬性。我們相信隨著現代科技的發展進步,多學科和多方向的交叉融合能夠進一步拓寬光子超材料的設計思路,推進理論向實用轉化。
- Abstract:
-
Photonicbandgap metamaterial is a kind of attractive manmade material used to manipulate light transmission, which commonly appears as microstructure or nanostructure composed of periodic dielectrics, metals, or even superconductors. The photonic bandgap can be regarded as the light propagating in the photonic crystal undergoes multiple reflections at the interfaces of high and low dielectric constant regions and destructive interference, similar to the electron bandgap of solidstate physics. This paper focuses on several popular fields of photonic bandgap metamaterial research in recent years: photonic crystal fiber, optical topological state, Dirac point zero refractive index and bandgap modulation luminescence, from the theory of condensed matter physics. Comparing with the electronic bandgap and Dirac equation theory, the development and application of dielectric photonic crystals, optical topological insulators, multiple degeneracy at Dirac point, composite photonicbandgap materials composed of metal, luminescent materials and photonic crystals are demonstrated in detail. The flexible and tunable properties of photonic bandgap metamaterials can be used not only to design conventional optical device with higher quality, but also to obtain exotic properties that are not found in nature. We believe that, with the development and progress of modern science and technology, multidisciplinary and multidirectional crossfusion can further broaden the design ideas of photonic metamaterials and promote the theory results to transform to application.
更新日期/Last Update:
2018-12-29