[1]趙鼎祺,喬珺威,吳玉程.機器學習輔助高熵合金設計的研究進展[J].中國材料進展,2021,40(07):508-517.[doi:10.7502/j.issn.1674-3962.202011011]
ZHAO Dingqi,QIAO Junwei,WU Yucheng.Research Progress of Machine Learning Aided High Entropy Alloy Design[J].MATERIALS CHINA,2021,40(07):508-517.[doi:10.7502/j.issn.1674-3962.202011011]
點擊復制
機器學習輔助高熵合金設計的研究進展(
)
中國材料進展[ISSN:1674-3962/CN:61-1473/TG]
- 卷:
-
40
- 期數:
-
2021年第07期
- 頁碼:
-
508-517
- 欄目:
-
- 出版日期:
-
2021-07-30
文章信息/Info
- Title:
-
Research Progress of Machine Learning Aided High Entropy Alloy Design
- 文章編號:
-
1674-3962(2021)07-0508-10
- 作者:
-
趙鼎祺; 喬珺威; 吳玉程
-
(太原理工大學材料科學與工程學院,山西 太原 030024)
- Author(s):
-
ZHAO Dingqi; QIAO Junwei; WU Yucheng
-
(College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China)
-
- 關鍵詞:
-
高熵合金; 復雜成分合金; 機器學習; 人工神經元網絡; 人工智能
- Keywords:
-
High entropy alloy; Complex concentrated alloys; Machine learning; Artificial neural network; Artificial intelligence
- 分類號:
-
TG139;TP181
- DOI:
-
10.7502/j.issn.1674-3962.202011011
- 文獻標志碼:
-
A
- 摘要:
-
近年來,高熵合金因其優異的性能和廣闊的發展前景吸引了越來越多的關注,成為材料科學中的熱門領域。由于高熵合金復雜的元素組成,使用傳統方法對高熵合金進行計算不僅困難而且代價高昂,影響因素的多樣性也為高熵合金的設計增加了困難,開發新方法加速對高熵合金成分空間的探索是當務之急。隨著對高熵合金研究的不斷深入,實驗數據不斷積累,人們嘗試從數據的角度尋求解決方案。與此同時,人工智能的興起極大改變了我們的生活方式,以數據為驅動的機器學習與高熵合金領域交叉融合,二者相得益彰并取得了一系列成果。人工神經元網絡、支持向量機、主成分分析等方法被應用于高熵合金的分析和預測。除此之外,機器學習還與從頭算和基于熱力學數據庫的方法相結合,在挖掘數據價值與指導實驗設計方面展現出了優勢。首先對材料科學中的機器學習和高熵合金兩個領域做了簡述,介紹了近年利用機器學習輔助高熵合金設計的典型研究成果。并對未來機器學習在高熵合金中的應用提出一些展望與建議。
- Abstract:
-
In recent years, high entropy alloys have increasingly attracted attention due to their excellent properties and broad development prospects, become a hot field in materials science. Due to the complex element composition of high entropy alloy, it is difficult and expensive to use the traditional methods to calculate. The diversity of the influencing factors also makes the design of high entropy alloy more difficult. It is urgent to develop new strategies to accelerate the exploration of high entropy alloy composition space. With the development of research on high entropy alloys and the accumulation of experimental data, researchers try to find solutions from data. At the same time, the rise of artificial intelligence has dramatically changed our life. Machine learning and high entropy alloy field cross each other, and a series of achievements have been achieved. Artificial neural networks, support vector machine, principal component analysis, and other methods have been applied to analyzing and predicting high entropy alloys. Besides, machine learning combined with ab initio and thermodynamic library-based methods, has shown advantages in mining data value and guiding experimental design. In this paper, machine learning and high entropy alloys in materials science are briefly introduced, and recent researches on high entropy alloy design aided by machine learning are reviewed. Some prospects and suggestions for the application of machine learning in high entropy alloys in the future are put forward.
備注/Memo
- 備注/Memo:
-
收稿日期:2020-11-05修回日期:2021-03-16 第一作者:趙鼎祺,男,1995年生,博士研究生, Email:zhaodingqi@hotmailcom 通訊作者:喬珺威,男,1983年生,教授,博士生導師, Email:qiaojunwei@gmail.com
更新日期/Last Update:
2021-06-30