[1]江瑞斌,王宇陽,馬麗霞.表面等離激元光催化固氮研究進展[J].中國材料進展,2021,40(07):481-492.[doi:10.7502/j.issn.1674-3962.202104001]
JIANG Ruibin,WANG Yuyang,MA Lixia.Research Progress of Plasmonically Photocatalytic Nitrogen Fixation[J].MATERIALS CHINA,2021,40(07):481-492.[doi:10.7502/j.issn.1674-3962.202104001]
點擊復制
表面等離激元光催化固氮研究進展(
)
中國材料進展[ISSN:1674-3962/CN:61-1473/TG]
- 卷:
-
40
- 期數:
-
2021年第07期
- 頁碼:
-
481-492
- 欄目:
-
- 出版日期:
-
2021-07-30
文章信息/Info
- Title:
-
Research Progress of Plasmonically Photocatalytic Nitrogen Fixation
- 文章編號:
-
1674-3962(2021)07-0481-12
- 作者:
-
江瑞斌; 王宇陽; 馬麗霞
-
(陜西師范大學材料科學與工程學院 陜西省能源新材料與器件重點實驗室,陜西 西安 710119)
- Author(s):
-
JIANG Ruibin; WANG Yuyang; MA Lixia
-
(Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, China)
-
- 關鍵詞:
-
光催化; 固氮; 表面等離激元; 熱電子; 半導體
- Keywords:
-
photocatalysis; nitrogen fixation; surface plasmon; hot electrons; semiconductor
- 分類號:
-
O643.36
- DOI:
-
10.7502/j.issn.1674-3962.202104001
- 文獻標志碼:
-
A
- 摘要:
-
氮是生物體必需的元素,然而氮氣由于其強的化學三鍵,無法直接被生物體利用,必須先轉化為氨或氮氧化物才能被生物體利用。目前人工固氮主要依賴于HaberBosch氨合成方法,該方法在高溫、高壓條件下進行,造成了巨大的能源消耗和環境污染。光催化固氮被認為是一種極具前景的綠色人工固氮技術,但是傳統的半導體光催化劑的光響應受其帶隙的限制,很難實現對光的寬譜響應。局域表面等離激元(localized surface plasmon, LSP)共振波長可以通過納米顆粒尺寸和長徑比來調控,實現對太陽光的寬譜響應和強吸收,因此LSP光催化固氮受到了人們的關注。首先介紹了光催化固氮的基本原理,隨后深入闡述了LSP的性質和其光催化機制,緊接著概括了近年來LSP光催化固氮的研究進展,最后對LSP光催化固氮研究中存在的問題及未來的發展趨勢進行分析和展望。
- Abstract:
-
Nitrogen is a necessary element for biosome. However, the molecular nitrogen can’t be directly used because of the extremely strong triple bond. It must be converted into ammonia or nitrogen oxide at first for biological assimilation. To date, the artificial nitrogen fixation is dependent on the Haber-Bosch method, which is carried out at high temperature and high pressure. It consumes substantial energy and releases enormous greenhouse gases. In the context of the global energy crisis and increasing greenhouse effect, it is urgent to explore green nitrogen-fixation strategies. Photocatalytic nitrogen fixation is one of the most promising green nitrogen fixation methods. In comparison with traditional semiconductor photocatalysts whose light absorption is limited by the band gap, the light absorption of localized surface plasmon (LSP) nanostructures can be tuned by varying the size and aspect ratio, and thereby LSP can realize broadband response and strong absorption to solar light. Hence, plasmonically photocatalytic nitrogen fixation attracts extensive attention recently. This review gives an overview of fundamentals, recent progress, and future perspective of plasmonically photocatalytic nitrogen fixation.
備注/Memo
- 備注/Memo:
-
收稿日期:2021-04-01修回日期:2021-06-01 基金項目:國家自然科學基金資助項目(61775129);中央高校基本科研業務費資助項目(GK201902001)第一作者:江瑞斌,男,1985年生,教授,博士生導師, Email:rbjiang@snnu.edu.cn
更新日期/Last Update:
2021-06-30