[1]孔令明,闞洪敏,陳碩,等.鋁錫合金研究進展[J].中國材料進展,2023,42(10):840-846.[doi:10.7502/j.issn.1674-3962.202106007]
KONG Lingming,KAN Hongmin,CHEN Shuo,et al.Research Progress of Aluminum-Tin Alloy[J].MATERIALS CHINA,2023,42(10):840-846.[doi:10.7502/j.issn.1674-3962.202106007]
點擊復制
鋁錫合金研究進展(
)
中國材料進展[ISSN:1674-3962/CN:61-1473/TG]
- 卷:
-
42
- 期數:
-
2023年第10期
- 頁碼:
-
840-846
- 欄目:
-
- 出版日期:
-
2023-10-31
文章信息/Info
- Title:
-
Research Progress of Aluminum-Tin Alloy
- 文章編號:
-
1674-3962(2023)10-0840-07
- 作者:
-
孔令明1; 2; 闞洪敏1; 2; 陳碩1; 2; 王曉陽1; 2; 龍海波1; 2
-
1. 沈陽大學機械工程學院 遼寧省多組硬質膜研究及應用重點實驗室,遼寧 沈陽 110044
2. 沈陽大學機械工程學院 遼寧省先進材料制備技術重點實驗室,遼寧 沈陽 110044
- Author(s):
-
KONG Lingming1; 2; KAN Hongmin1; 2; CHEN Shuo1; 2; WANG Xiaoyang1; 2; LONG Haibo1; 2
-
1. Key Laboratory of Research and Application of Multiple Hard Films of Liaoning Province, School of Mechanical Engineering, Shenyang University,Shenyang 110044, China
2. Key Laboratory of Advanced Materials Preparation Technology of Liaoning Province, School of Mechanical Engineering, Shenyang University, Shenyang 110044, China
-
- 關鍵詞:
-
鋁錫合金; 制備方法; 工藝參數; 性能; 工程應用
- Keywords:
-
aluminum-tin alloy; preparation method; process parameters; properties; engineering applications
- 分類號:
-
TB331
- DOI:
-
10.7502/j.issn.1674-3962.202106007
- 文獻標志碼:
-
A
- 摘要:
-
鋁錫合金因其優異的力學性能、摩擦學性能和導電導熱性能而廣泛應用于機械制造、航空航天以及交通運輸等領域。為適應不同領域的需求衍生出多種多樣的鋁錫合金制備方法,其中機械合金化法可制備高強度鋁錫合金,但高能球磨過程易于促進錫晶須生長,對合金材料安全性能有不利影響;鑄造法工藝簡單能耗較少,但易產生錫相的嚴重偏析;表面沉積法可制備納米級且成分均勻的鋁錫合金,但磁控濺射法和噴霧成型法均受限于基體形狀,且前者設備成本較高不利于大規模生產,而電沉積法生產成本較低并且對于形狀復雜的基體也能做到均勻鍍覆,有望取代一些高成本制備方法,成為鋁錫合金工業生產優選方案之一。另外,調控各類方法中不同的工藝參數也會對鋁錫合金的形貌及性能產生不同的影響。參考近年有關鋁錫合金的研究報道,綜述了鋁錫合金的制備方法、各種工藝參數對制備鋁錫合金形貌和性能的影響以及鋁錫合金在軸承材料、制氫材料和電子材料等方面的應用,同時對鋁錫合金的未來研究前景作出展望。
- Abstract:
-
Aluminum-tin alloys are widely used in machinery manufacturing, aerospace, transportation and other fields because of their excellent mechanical properties, tribological properties, and electrical and thermal conductivity. In order to adapt to the research in different fields, a variety of aluminum-tin alloy preparation methods have been derived. Among them, the mechanical alloying method can prepare high-strength aluminum-tin alloys; but it is easy to promote the growth of tin whiskers to adversely affect the safety performance of alloy materials during high energy ball milling process; the casting process is simple and consumes less energy, but it is easy to produce severe segregation of tin phase; the surface deposition method can prepare nano-sized and uniform aluminum-tin alloys; but the magnetron sputtering method and spray molding method are both limited by the shape of the substrate, and the high equipment cost of the former is not conducive to large-scale production; while the production cost of electrodeposition method is low, and the coating can be evenly prepared on some complex-shaped substrates. It is expected to replace some high-cost preparation methods and become one of the preferred solutions for aluminum-tin alloy industrial production. In addition, adjusting different process parameters in various methods will also have different effects on the morphology and properties of aluminum-tin alloys. By referring to research reports on aluminum-tin alloys in recent years, the preparation methods of aluminum-tin alloys, the influence of various process parameters on the preparation of morphology and properties of aluminum-tin alloys, and the applications of aluminum-tin alloys in bearing materials, hydrogen production materials and electronic materials are reviewed. At the same time, prospects for the future research of aluminum-tin alloys are put forward.
參考文獻/References:
\[1\]LAI Z M,YE D. Journal of Materials Science: Materials in Electronics\[J\],2016,27(2):1177-1183.
\[2\]ZENG M Q,HU R Z,SONG K Q,et al. Tribology Letters\[J\],2019,67(3):84.
\[3\]LIU X,ZENG M Q,MA Y,et al. Materials Science & Engineering A\[J\],2008,506(1):1-7.
\[4\]LIU X,ZENG M Q,MA Y,et al. Wear\[J\],2012,294/295: 387-394.
\[5\]ZHANG Y,ZHANG P,HE W,et al. Journal of Materials Science:Materials in Electronics\[J\],2020,31(2):1328-1334.
\[6\]SUN M L,LONG X P,DONG M Y,et al. Materials Characterization\[J\],2017,134:354-361.
\[7\]HUANG C M,NUNEZ D,COBUM J,et al. Microelectronics Reliability\[J\],2018,81:22-30.
\[8\]RAMADAN M,AYADI B,RAJHI W,et al. Key Engineering Materials\[J\],2020,4894:108-114.
\[9\]XU G M,LI B M,GUI J Z. Journal of Iron and Steel Research International\[J\],2006,13(2):73-76.
\[10\]CONFALONIERI C,GARIBOLDI E. Journal of Alloys and Compounds\[J\],2021,881:160596.
\[11\]RUSIN N M,IVANOV K V. Russian Journal of NonFerrous Metals\[J\],2011,52(6):204-510.
\[12\]RUSIN N M,SKORENTSEV A L,KOLUBAEV E A. Journal of Materials Engineering and Performance\[J\],2020,29(3):1955-1963.
\[13\]BAK J H,CHO D H,SHIN S,et al. The Korean Institute of Metals and Materials\[J\],2018,24(1):205-215.
\[14\]RUSIN N M,SKORENTSEV A L. Applied Mechanics and Materials\[J\],2013,2585:110-114.
\[15\]郭巧琴,蔣百靈,李建平,等. 特種鑄造及有色合金\[J\],2010,30(12):1150-1152.
GUO Q Q,JIANG B L,LI J P,et al. Special Casting & Nonferrous Alloys\[J\],2010,30(12):1150-1152.
\[16\]郭巧琴,李建平,蔣百靈. 材料熱處理學報\[J\],2015,36(5):161-166.
GUO Q Q,LI J P,JIANG B L. Transactions of Materials and Heal Treatment\[J\],2015,36(5):161-166.
\[17\]GUO Q Q,LI J P,GUO Y C.Rare Metal Materials and Engineering\[J\],2015,44(8):1857-1861.
\[18\]郭巧琴,蔣百靈,李建平.中國有色金屬學報\[J\],2012,22(8):2289-2294.
GUO Q Q,JIANG B L,LI J P. The Chinese Journal of Nonferrous Metals\[J\],2012,22(8):2289-2294.
\[19\]郭巧琴,李建平.西安工業大學學報\[J\],2016,36(6):481-484.
GUO Q Q,LI J P. Journal of Xian Technological University\[J\],2016,36(6):481-484.
\[20\]郭巧琴,蔣百靈,李建平,等.特種鑄造及有色合金\[J\],2011,31(4):308-310.
GUO Q Q,JIANG B L,LI J P,et al. Special Casting & Nonferrous Alloys\[J\],2011,31(4):308-310.
\[21\]于佃榮,江強,周細應. 腐蝕與防護\[J\],2012,33(11):952-959.
YU D R,JIANG Q,ZHOU X Y. Corrosion & Protection\[J\],2012,33(11):952-959.
\[22\]宋惠,劉智勇,唐緯虹,等. 兵器材料科學與工程\[J\],2017,40(6):26-29.
SONG H,LIU Z Y,TANG W H,et al. Ordnance Material Science and Engineering\[J\],2017,40(6):26-29.
\[23\]LIU Y H,LIU X J,CHEN X R,et al. International Journal of Hydrogen Energy\[J\],2017,42(16):10943-10951.
\[24\]ANIL M,BALAJI S,GHOSH M K,et al. Journal of Materials Engineering and Performance\[J\],2010,19(9):1357-1361.
\[25\]PLATIS F S,CAPUANO G A. Journal of the Electrochemical Society\[J\],1987,134:2425-2429.
\[26\]BELOV N A,AKOPYAN T K,GERSHMAN I S,et al. Journal of Alloys and Compounds\[J\],2017,695:2730-2739.
\[27\]BERTELLI F,CHEUNG N,FERRIIRA I L,et al. The Journal of Chemical Thermodynamics\[J\],2016,98:9-20.
\[28\]LIU H X,WANG C P,YU Y,et al. Journal of Phase Equilibria and Diffusion\[J\],2012,33(1):9-19.
\[29\]ROSALES I,GONZALEZ R G,GAMA J L,et al. Materials Sciences and Applications\[J\],2014,5(5):330-337.
\[30\]DONG B W,WU Z P,WANG P F,et al. Journal of Alloys and Compounds\[J\],2021,874:159756.
\[31\]SETHURAM D,KOPPAD P G,SHETTY H,et al. Materials Today: Proceedings\[J\],2018,5(11):24505-24514.
\[32\]KALASHNIKOV I E,BOLOTOVA L K,KOBELEVA L I,et al. Inorganic Materials:Applied Research\[J\],2021,12(3):750-754.
\[33\]JAYARAM B,SATYANARAYAN. Transactions of the Indian Institute of Metals\[J\],2019,72(7):1941-1947.
\[34\]CHIKOVA O A,KONSTANTINOV A N,SHISHKINA E V,et al. Russian Metallurgy (Metally)\[J\],2013,2013(7):535-544.
\[35\]VALIZADEH A R,KIANIRASHID A R,AVAZKONANDEHGHARAVOL M H,et al. Metallography,Microstructure,and Analysis\[J\],2013,2(2):107-112.
\[36\]SONG K Q,LU Z C,ZHU M,et al. Surface and Coatings Technology\[J\],2017,325:682-688.
\[37\]LIU Y,JIANG S,WU C J,et al. Journal of Phase Equilibria and Diffusion\[J\],2019,40(2):235-246.
\[38\]WANG B J,WU W H,LIU J M,et al. Applied Physics A: Materials Science & Processing\[J\],2020,126(2):112-120.
\[39\]KLEBER S C,ELISANGELA S M,FREDERICO A P F,et al. Metallurgical and Materials Transactions A\[J\],2010,41(4):972-984.
\[40\]MAKHATHA M E,FATOBA O S,AKINLABI E T. International Journal of Advanced Manufacturing Technology\[J\],2018,94(1):773-787.
\[41\]ZHONG Y B,WANG H,WANG Y B,et al. Metallurgical and Materials Transactions A\[J\],2017,48(7):3377-3388.
\[42\]GEBRETSADIK D W,HARDELL J,PRAKASH B. Wear\[J\],2015,340-341:63-72.
\[43\]LU Z C,GAO Y,ZENG M Q,et al. Wear\[J\],2014,309(1/2):216-225.
\[44\]BERTELLI F,FREITAS E S,CHEUNG N,et al. Journal of Alloys and Compounds\[J\],2017,695:3621-3631.
\[45\]FIGUEROA G G,JACOBO V H,ORTIZ A,et al. Tribology Letters\[J\],2015,59(5):14-23.
\[46\]KURBATKIN I I,BELOV N A,OZERSKIY O N,et al. Journal of Friction and Wear\[J\],2014,35(2):93-97.
\[47\]BOCKRIS J O M. International Journal of Hydrogen Energy\[J\],2013,38(6):2579-2588.
\[48\]KONNO C,CRUZ C,COSTA T,et al. International Journal of Hydrogen Energy\[J\],2021,46(24):12654-12671.
\[49\]LIU Y,LIU X,CHEN X,et al. International Journal of Hydrogen Energy\[J\],2017,42(16):10943-10951.
\[50\]LIU X J,ZOU H W,ZHANG J B,et al. Journal of Phase Equilibria and Diffusion\[J\],2019,40(2):176-187.
\[51\]MASOUD E,MEHMOUSH N,MANSOURE P,et al. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences\[J\],2019,90(4):637-646.
\[52\]TU H,ZHANG Z Q,LIU Y,et al. Journal of Phase Equilibria and Diffusion\[J\],2020,41(1):56-65.
\[53\]劉璇. 熱浸鍍AlZnInSi和AlZnSnSi鍍層的耐腐蝕性能及微觀組織研究\[D\]. 沈陽:東北大學,2014.
LIU X. Corrosion Resistance and Microstructure of HotDip AlZnInSi and AlZnSnSi Coatings\[D\].Shenyang:Northeastern University,2014.
\[54\]SHYROKOV V V,KHLOPYK O P. Materials Science\[J\],2010,46(3):371-375.
\[55\]PAN X M,DUAN H P. Rare Metals\[J\],2015,41(12):1-7.
\[56\]姚函妤,沈鴻烈,李金澤,等. 南京航空航天大學學報\[J\],2015,47(5):672-677.
YAO H Y,SHEN H L,LI J Z,et al. Journal of Nanjing University of Aeronautics & Astronautics\[J\],2015,47(5):672-677.
備注/Memo
- 備注/Memo:
-
收稿日期:2021-06-08修回日期:2021-12-03
基金項目:遼寧省自然科學基金項目(2021-MS-343)
第一作者:孔令明,男,1997年生,碩士
通訊作者:闞洪敏,女,1978年生,教授,碩士生導師,
Email:kanhongmin2002@163.com
更新日期/Last Update:
2023-09-28