[1]馬思遙,張學(xué)習(xí),錢明芳,等.Ni-Mn基多晶鐵磁形狀記憶合金的韌化[J].中國材料進(jìn)展,2024,43(05):408-419.[doi:10.7502/j.issn.1674-3962.202109042]
MA Siyao,ZHANG Xuexi,QIAN Mingfang,et al.Toughening of Polycrystalline Ni-Mn-Based Ferromagnetic Shape Memory Alloys[J].MATERIALS CHINA,2024,43(05):408-419.[doi:10.7502/j.issn.1674-3962.202109042]
點(diǎn)擊復(fù)制
Ni-Mn基多晶鐵磁形狀記憶合金的韌化(
)
中國材料進(jìn)展[ISSN:1674-3962/CN:61-1473/TG]
- 卷:
-
43
- 期數(shù):
-
2024年第05期
- 頁碼:
-
408-419
- 欄目:
-
- 出版日期:
-
2024-05-30
文章信息/Info
- Title:
-
Toughening of Polycrystalline Ni-Mn-Based Ferromagnetic Shape Memory Alloys
- 文章編號(hào):
-
1674-3962(2024)05-0408-12
- 作者:
-
馬思遙; 張學(xué)習(xí); 錢明芳; 賈政剛; 鐘詩江; 耿林
-
哈爾濱工業(yè)大學(xué)材料科學(xué)與工程學(xué)院,黑龍江 哈爾濱 150001
- Author(s):
-
MA Siyao; ZHANG Xuexi; QIAN Mingfang; JIA Zhenggang; ZHONG Shijiang; GENG Lin
-
School of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China
-
- 關(guān)鍵詞:
-
鐵磁形狀記憶合金; NiMnGa合金; 韌化; 固體制冷; 彈熱效應(yīng); 全d軌道雜化
- Keywords:
-
ferromagnetic shape memory alloy; Ni-Mn-Ga alloy; toughening; solid-state refrigeration; elastocaloric effect; all d-orbital hybridization
- 分類號(hào):
-
TG139+.6
- DOI:
-
10.7502/j.issn.1674-3962.202109042
- 文獻(xiàn)標(biāo)志碼:
-
A
- 摘要:
-
固態(tài)制冷技術(shù)由于具有環(huán)保、高效、節(jié)能的特點(diǎn),因而有望取代傳統(tǒng)的氣體壓縮式制冷技術(shù)。在各種有競爭力的制冷劑中,Ni-Mn基鐵磁形狀記憶合金由于具有磁熱效應(yīng)、彈熱效應(yīng)、壓熱效應(yīng)、磁阻、磁致應(yīng)變等多功能特性而受到了人們的廣泛關(guān)注。近年來,材料工程師及科學(xué)家們對Ni-Mn基磁形狀記憶合金的熱效應(yīng)開展了一列深入的研究并取得了眾多研究成果,但Ni-Mn基合金韌性較低,導(dǎo)致性能衰減快、循環(huán)穩(wěn)定性差,限制了Ni-Mn基合金的應(yīng)用。綜述了傳統(tǒng)的過渡族元素、稀土元素和類金屬元素?fù)诫s引起的固溶強(qiáng)化、第二相強(qiáng)化、細(xì)晶強(qiáng)化和晶界凈化與修飾對Ni-Mn基合金韌性的影響規(guī)律,比較了不同方法在Ni-Mn基合金韌性增強(qiáng)方面的優(yōu)缺點(diǎn),歸納了近年來受到重視的尺寸效應(yīng)和全d軌道雜化等強(qiáng)韌化機(jī)理,分析了軌道雜化途徑存在的主要問題,展望了Ni-Mn基合金的研究和發(fā)展方向,對促進(jìn)Ni-Mn基合金在功能器件等領(lǐng)域的應(yīng)用具有重要的意義。
- Abstract:
-
The solid-state refrigeration technology is expected to replace the traditional gas compression refrigeration technology because of its environmental protection, high efficiency, and energy saving characteristics. Among various competitive solid-state cooling materials, Ni-Mn-based ferromagnetic memory alloys have received widespread attention due to their multifunctional properties such as magnetocaloric effect, elastocaloric effect, barocaloric effect, magnetoresistance, and magnetic field induced strain, etc. In recent years, materials engineers and scientists have carried out a series of in-depth studies on the thermal effects of Ni-Mn-based magnetic shape memory alloys and have obtained numerous research results. However, the poor toughness and cyclic stability greatly limited their practical application in solid-state refrigeration region. This article summarizes the influence of element doping, microstructure design and size effect on the strength and toughness of Ni-Mn-based ferromagnetic shape memory alloys, where the mechanisms are also summarized. The pros and cons of different methods in Ni-Mn-based alloy toughness enhancement are compared. The main problems existing in orbital hybridization methods are analyzed. The main research direction of Ni-Mn-based ferromagnetic memory alloy is prospected, which has important theoretical significance and research value for promoting the application of NiMn-based ferromagnetic memory alloy in various fields.
參考文獻(xiàn)/References:
[1] LI D,LI Z,YANG J,et al. Scripta Mater[J],2019,163:116-120.
[2] TANG X,F(xiàn)ENG Y,WANG H,et al. Appl Phys Lett[J],2019,114(3):033901.
[3] QU Y H,CONG D Y,LI S H,et al. Acta Mater[J],2018,151:41-55.
[4] REIS M S. Coordin Chem Rev[J],2020,417:213357.
[5] MOYA X,KAR-NARAYAN S,MATHUR N D. Nat Mater[J],2014,13(5):439-450.
[6] NEESE B,CHU B,LU S G,et al. Science[J],2008,321(5890):821-823.
[7] LIU J,GOTTSCHALL T,SKOKOV K P,et al. Nat Mater[J],2012,11(7):620-626.
[8] GUILLOU F,PORCARI G,YIBOLE H,et al. Adv Mater[J],2014,26(17):2671-2675.
[9] BONNOT E,ROMERO R,MA?OSA L,et al. Phys Rev Lett[J],2008,100(12)
[10] VELIAN A,CUMMINS C C. Science[J],2015,348(6238):1001-1004.
[11] ULLAKKO K,HUANG J K,KANTNER C,et al. Appl Phys Lett[J],1996,69(13):1966-1968.
[12] GRAF T,F(xiàn)ELSER C,PARKIN S S P. Prog Solid State Ch[J],2011,39(1):1-50.
[13] KHOVAYLO V V,BUCHELNIKOV V D,KAINUMA R,et al. Phys Rev B[J],2006,73(14)
[14] AKSOY S,KRENKE T,ACET M,et al. Appl Phys Lett[J],2007,91(25):251915.
[15] PLANES A,MA?OSA L,ACET M. Journal of Physics: Condensed Matter[J],2009,21(23):233201.
[16] YAN H,WANG L,LIU H,et al. Mater Design[J],2019,184:108180.
[17] HUANG X,WANG L,LIU H,et al. Intermetallics[J],2019,113:106579.
[18] YAN H,ZHAO Y,LIU H,et al. J Alloy Compd[J],2020,821:153481.
[19] CZAJA P,CHULIST R,TOKARSKI T,et al. J Mater Sci[J],2018,53(14):10383-10395.
[20] CHERNENKO V A,VILLA E,SALAZAR D,et al. Appl Phys Lett[J],2016,108(7):071903.
[21] WANG J,YU Q,XU K,et al. Scripta Mater[J],2017,130:148-151.
[22] WILKES K,LIAW P.JOM[J],2000,52(10):45-51
[23] LU B,ZHANG P,XU Y,et al. Mater Lett[J],2015,148:110-113.
[24] ROY S,BLACKBURN E,VALVIDARES S M,et al. Physical Review. B, Condensed matter and materials physics[J],2009,79(23): 235127
[25] GAUTAM B R,DUBENKO I,MABON J C,et al. J Alloy Compd[J],2009,472(1-2):35-39.
[26] WANG J,JIANG C. Scripta Mater[J],2010,62(5):298-300.
[27] WANG J,WANG H,JIANG C. Mater Sci Eng: A[J],2013,578:256-259.
[28] LI Y,SUN W,ZHAO D,et al. Scripta Mater[J],2017,130:278-282.
[29] XUE F,DAI-NING F,KEH-CHIH H. Chinese Phys Lett[J],2002,19:1547.
[30] CHERECHUKIN A A,DIKSHTEIN I E,ERMAKOV D I,et al. Physics letters. A[J],2001,291(2-3):175-183.
[31] WANG H B,CHEN F,GAO Z Y,et al. Mater Sci Eng: A[J],2006,438-440:990-993.
[32] FENG Y,SUI J H,GAO Z Y,et al. Mater Sci Eng: A[J],2009,507(1-2):174-178.
[33] HUANG L,CONG D Y,SUO H L,et al. Appl Phys Lett[J],2014,104(13):132407.
[34] KRENKE T,DUMAN E,ACET M,et al. Nat Mater[J],2005,4(6):450-454.
[35] YU S Y,MA L,LIU G D,et al. Appl Phys Lett[J],2007,90(24):242501.
[36] ZHANG B,ZHANG X X,YU S Y,et al. Appl Phys Lett[J],2007,91(1):012510.
[37] KAINUMA R,IMANO Y,ITO W,et al. Appl Phys Lett[J],2006,88(19):192513.
[38] OIKAWA K,OTA T,OHMORI T,et al. Appl Phys Lett[J],2002,81(27):5201-5203.
[39] OIKAWA K,WULFF L,IIJIMA T,et al. Appl Phys Lett[J],2001,79(20):3290-3292.
[40] MA Y,YANG S,LIU Y,et al. Acta Mater[J],2009,57(11):3232-3241.
[41] SHEN A,SUN W,ZHAO D,et al. Phys Lett a[J],2018,382(39):2876-2879.
[42] LI Y,XIN Y,JIANG C,et al. Scripta Mater[J],2004,51(9):849-852.
[43] ZHANG X,SUI J,ZHENG X,et al. J Alloy Compd[J],2013,557:60-66.
[44] ZHANG X,SUI J,YU Z,et al. J Alloy Compd[J],2011,509(31):8032-8037.
[45] DONG G F,ZHANG H J,ZHANG X L,et al. Mater Sci Tech-Lond[J],2014,28(11):1332-1336.
[46] TAN C,ZHANG K,TIAN X,et al. J Alloy Compd[J],2017,692:288-293.
[47] LI H,MENG X,CAI W. Mater Sci Eng: A[J],2018,725:359-363.
[48] TIAN X,ZHANG K,TAN C,et al. Crystals[J],2018,8(6):247.
[49] SHEN Q,ZHAO D,SUN W,et al. J Alloy Compd[J],2017,696:538-542.
[50] WU Y,WANG J,JIANG C,et al. Mater Sci Eng: A[J],2015,646:288-293.
[51] LEE J,OH Y,EUH K,et al. Met Mater Int[J],2009,15(3):459-463.
[52] TSUCHIYA K,TSUTSUMI A,OHTSUKA H,et al. Mater Sci Eng: A[J],2004,378(1-2):370-376.
[53] GAO L,GAO Z Y,CAI W,et al. Mater Sci Eng: A[J],2006,438-440:1077-1080.
[54] GAO L,SUI J H,CAI W,et al. Solid State Commun[J],2009,149(5-6):257-260.
[55] GAO L,DONG G F,GAO Z Y,et al. J Alloy Compd[J],2012,520:281-286.
[56] CAI W,GAO L,LIU A L,et al. Scripta Mater[J],2007,57(7):659-662.
[57] SUI J,ZHANG X,GAO L,et al. J Alloy Compd[J],2011,509(35):8692-8699.
[58] NONG N V,TAI L T,HUY N T,et al. Mater Sci Eng: B[J],2011,176(16):1322-1325.
[59] PRUSIK K,MATYJA E,ZUBKO M,et al. Acta Phys Pol a[J],2016,130(4):1023-1025.
[60] AYDOGDU Y,TURABI A S,KOK M,et al. Applied Physics A[J],2014,117(4):2073-2078.
[61] ZHANG X,LIU Q,ZENG X,et al. Intermetallics[J],2016,68:113-117.
[62] BARMAN R,KAUR D. Vacuum[J],2015,120:22-26.
[63] YANG Z,CONG D Y,SUN X M,et al. Acta Mater[J],2017,127:33-42.
[64] YANG Z,CONG D,YUAN Y,et al. Mater Res Lett[J],2019,7(4):137-144.
[65] CONG D Y,HUANG L,HARDY V,et al. Acta Mater[J],2018,146:142-151.
[66] WANG Y,CHOO H. Acta Mater[J],2014,81:83-97.
[67] LI Z,LI Z,YANG J,et al. Scripta Mater[J],2019,162:486-491.
[68] HUANG Y J,HU Q D,LIU J,et al. Acta Mater[J],2013,61(15):5702-5712.
[69] HUANG Y J,HU Q D,BRUNO N M,et al. Scripta Mater[J],2015,105:42-45.
[70] HUANG Y J,HU Q D,BRUNO N,et al. Mater Lett[J],2014,114:11-14.
[71] MILL?N-SOLSONA R,STERN-TAULATS E,VIVES E,et al. Appl Phys Lett[J],2014,105(24):241901.
[72] ZHAO D,LIU J,CHEN X,et al. Acta Mater[J],2017,133:217-223.
[73] ZHAO D,LIU J,F(xiàn)ENG Y,et al. Appl Phys Lett[J],2017,110(2):021906.
[74] LU B,SONG M,ZHOU Z,et al. J Alloy Compd[J],2019,785:1023-1029.
[75] LU B,XIAO F,YAN A,et al. Appl Phys Lett[J],2014,105(16):161905.
[76] CUI J,WU Y,MUEHLBAUER J,et al. Appl Phys Lett[J],2012,101(7):073904.
[77] BECHTOLD C,CHLUBA C,LIMA DE MIRANDA R,et al. Appl Phys Lett[J],2012,101(9):091903.
[78] MA?OSA L,JARQUE-FARNOS S,VIVES E,et al. Appl Phys Lett[J],2013,103(21):211904.
[79] XIAO F,F(xiàn)UKUDA T,KAKESHITA T. Appl Phys Lett[J],2013,102(16):161914.
[80] HERN?NDEZ-NAVARRO F,CAMARILLO-GARCIA J,AGUILAR-ORTIZ C,et al. Appl Phys Lett[J],2018,112(16):164101.
[81] DUNAND D C,M?LLNER P. Adv Mater[J],2011,23(2):216-232.
[82] UELAND S M,CHEN Y,SCHUH C A. Adv Funct Mater[J],2012,22(10):2094-2099.
[83] ZHUKOV A,GARCIA C,ILYN M,et al. J Magn Magn Mater[J],2012,324(21):3558-3562.
[84] ZHUKOV A,RODIONOVA V,ILYN M,et al. J Alloy Compd[J],2013,575:73-79.
[85] ZHUKOVA V,CHERNENKO V,IPATOV M,et al. IEEE T Magn[J],2015,51(11):1-4.
[86] ZHUKOVA V,IPATOV M,GRANOVSKY A,et al. J Appl Phys[J],2014,115(17):17A939.
[87] ZHUKOVA V,RODIONOVA V,F(xiàn)ETISOV L,et al. Ieee T Magn[J],2014,50(11):1-4.
[88] ZHANG Y,LI M,WANG Y D,et al. Adv Eng Mater[J],2014,16(8):955-960.
[89] GLOCK S,ZHANG X X,KUCZA N J,et al. Composites Part A: Applied Science and Manufacturing[J],2014,63:68-75.
[90] LIU D M,CONG D Y,SUN X M,et al. J Alloy Compd[J],2017,728:655-658.
[91] DING Z Y,ZHU J,ZHANG X Z,et al. Journal of Physics D: Applied Physics[J],2017,50(9):095303
[92] LI F Q,QU Y H,YAN H L,et al. Appl Phys Lett[J],2018,113(11):112402.
[93] FENG Y,CHEN H,GAO L,et al. Mater Charact[J],2016,122:170-176.
[94] HERNANDO B,S?NCHEZ LLAMAZARES J L,PRIDA V M,et al. Appl Phys Lett[J],2009,94(22):222502.
[95] AKKERA H S,SINGH I,KAUR D. J Alloy Compd[J],2015,642:53-62.
[96] WEI Z Y,LIU E K,CHEN J H,et al. Appl Phys Lett[J],2015,107(2):022406.
[97] WEI Z Y,LIU E K,LI Y,et al. Appl Phys Lett[J],2016,109(7):071904.
[98] WEI Z Y,SUN W,SHEN Q,et al. Appl Phys Lett[J],2019,114(10):101903.
[99] SHEN Y,SUN W,WEI Z Y,et al. Scripta Mater[J],2019,163:14-18.
[100] ZHOU M,LI Y S,ZHANG C,et al. Chin. Phys. B[J],2019,27(10):106501.
[101] AZNAR A,GR?CIA-CONDAL A,PLANES A,et al. Phys Rev Mater[J],2019,3(4) :044406.
[102] SHEN Y,WEI Z,SUN W,et al. Acta Mater[J],2020,188:677-685.
備注/Memo
- 備注/Memo:
-
收稿日期:2021-10-08修回日期:2022-04-01
基金項(xiàng)目:國家自然科學(xué)基金資助項(xiàng)目(51701052)
第一作者:馬思遙,女,1994年生,博士研究生
通訊作者:張學(xué)習(xí),男,1975年生,教授,博士生導(dǎo)師,
Email:xxzhang@hit.edu.cn
更新日期/Last Update:
2023-10-25