[1]顧婉瑩,曾毅成,李紅博.鉛基鹵化物鈣鈦礦納米晶摻雜研究進展[J].中國材料進展,2023,42(10):769-778.[doi:10.7502/j.issn.1674-3962.202110018]
GU Wanying,ZENG Yicheng,LI Hongbo.Research Progress on Doping for Lead Halide Perovskite Nanocrystals[J].MATERIALS CHINA,2023,42(10):769-778.[doi:10.7502/j.issn.1674-3962.202110018]
點擊復制
鉛基鹵化物鈣鈦礦納米晶摻雜研究進展(
)
中國材料進展[ISSN:1674-3962/CN:61-1473/TG]
- 卷:
-
42
- 期數:
-
2023年第10期
- 頁碼:
-
769-778
- 欄目:
-
- 出版日期:
-
2023-10-31
文章信息/Info
- Title:
-
Research Progress on Doping for Lead Halide Perovskite Nanocrystals
- 文章編號:
-
1674-3962(2023)10-0769-10
- 作者:
-
顧婉瑩; 曾毅成; 李紅博
-
北京理工大學材料學院,北京 100081
- Author(s):
-
GU Wanying; ZENG Yicheng; LI Hongbo
-
School of Materials Science & Engineering,Beijing Institute of Technology,Beijing 100081,China
-
- 關鍵詞:
-
鉛基鹵化物鈣鈦礦; 半導體納米晶; 摻雜; 熒光; 金屬離子
- Keywords:
-
lead halide perovskite; semiconductor nanocrystal; doping; photoluminescence; metal ion
- 分類號:
-
TN304.2
- DOI:
-
10.7502/j.issn.1674-3962.202110018
- 文獻標志碼:
-
A
- 摘要:
-
鉛基鹵化物鈣鈦礦CsPbX3(X=Cl,Br,I)半導體納米晶由于具有窄半峰寬、可調發射波長、高熒光量子產率等優異的光電特性,在發光二極管、激光器、太陽能電池等領域有很廣闊的應用前景。通過化學摻雜的方法將摻雜原子引入到鈣鈦礦納米晶中,可以改變納米晶的光電性質,包括帶隙寬度、光致發光強度、熒光量子產率和穩定性,摻雜原子種類和濃度也會影響鈣鈦礦納米晶的電子能帶結構和熒光特性,因此針對鈣鈦礦納米晶的摻雜成為了近年來的研究熱點。ABX3型納米晶的A/B/X位均可被雜質原子取代,研究發現,B位摻雜對納米晶性質的影響更為明顯,綜述了鉛基鹵化物鈣鈦礦納米晶的B位摻雜方法、機理及對其結構和光電性能的影響,摻雜元素主要包括Mn,Ln,Sn和堿土金屬等。摻雜上述離子可有效改善鈣鈦礦納米晶光學性能和穩定性,并進一步推動其實際應用。
- Abstract:
-
Lead halide perovskite CsPbX3(X=Cl,Br,I) semiconductor nanocrystals have excellent photoelectric properties,such as narrow full width at half maximum,tunable emission wavelength and high photoluminescence quantum yield,which have great potentials for their applications in light-emitting diodes,lasers,solar cells.By introducing impurity atoms,the optoelectronic properties of perovskite nanocrystals,including the width of band gap,the intensity of photoluminescence and quantum yield can be adjusted and the stability of perovskite nanocrystals can be improved.The type and concentration of impurity also affect the electron band structure and photoluminescence properties of perovskite nanocrystals.Therefore,the doping of perovskite nanocrystals has become the focus of research in recent years.The A/B/X sites of ABX3 nanocrystals can be replaced by impurity atoms.The B-site ions have a significant effect on the properties of nanocrystals.In this paper,we review the doping methods,mechanism,and effects on the structure and photoelectric properties of perovskite nanocrystals on B-site.The doped elements mainly include manganese,lanthanide,tin and alkaline earth metals.Doping these ions in perovskite nanocrystals can effectively improve the optical performance and stability of perovskite nanocrystals,and further promote the practical application.
參考文獻/References:
\[1\]FAN Q,BIESOLD G V,MA J,et al. Angewandte Chemie International Edition\[J\],2020,59(3):1030-1046.
\[2\]WANG S,BI C,YUAN J,et al. American Chemical Society Energy Letters\[J\],2018,3(1):245-251.
\[3\]SHI H,ZHANG X,SUN X,et al. The Journal of Physical Chemistry C\[J\],2019,123(32):19844-19850.
\[4\]DAI J,XI J,ZU Y,et al. Nano Energy\[J\],2020,70:104467.
\[5\]WU L,HU H,XU Y,et al. Nano Letters\[J\],2017,17(9):5799-5804.
\[6\]ZHANG Y,ZHU H,ZHENG J,et al. The Journal of Physical Chemistry C\[J\],2019,123(7):4502-4511.
\[7\]SETH S,SAMANTA A. Scientific Reports\[J\],2016,6:37693.
\[8\]UDAYABHASKARARAO T,KAZES M,HOUBEN L,et al. Chemistry of Materials\[J\],2017,29(3):1302-1308.
\[9\]PROTESESCU L,YAKUNIN S,BODNARCHUK M I,et al. Nano Letters\[J\],2015,15(6):3692-3696.
\[10\]LI X,WU Y,ZHANG S,et al.Advanced Functional Materials\[J\],2016,26(15):2435-2445.
\[11\]AKKERMAN Q A,RAINO G,KOVALENKO M V,et al.Nature Materials\[J\],2018,17:394-405.
\[12\]RAINOE G,NEDELCU G,PROTESESCU L,et al. American Chemical Society Nano\[J\],2016,10(2):2485-2490.
\[13\]ZHANG Q,CHANG C,ZHAO W,et al. Optics Letters\[J\],2018,43(24):5925-5928.
\[14\]KIM H P,KIM J,KIM B S,et al. Advanced Optical Materials\[J\],2017,5(7):1600920.
\[15\]SHI Y,XI J,LEI T,et al. Applied Materials Interfaces\[J\],2018,10(11):9849-9857.
\[16\]XU L J,WORKU M,HE Q Q,et al. The Journal of Physical Chemistry Letters\[J\],2019,10(19):5836-5840.
\[17\]ZHENG X,HOU Y,SUN H T,et al. The Journal of Physical Chemistry Letters\[J\],2019,10(10):2629-2640.
\[18\]LU M,ZHNAG X,BAI X,et al. American Chemical Society Energy Letters\[J\],2018,3(7):1571-1577.
\[19\]LIU W,LIN Q,LI H,et al. Journal of the American Chemical Society\[J\],2016,138(45):14954-14961.
\[20\]TRAVIS W,GLOVER E,BRONSTEIN H,et al. Chemical Science\[J\],2016,7:4548-4556.
\[21\]MIR W J,JAGADEESWAEAEAO M,DAS S,et al. American Chemical Society Energy Letters\[J\],2017,2(3):537-543.
\[22\]YONG Z J,GUO S Q,MA J P,et al. Journal of the American Chemical Society\[J\],2018,140(31):9942-9951.
\[23\]LIU H,WU Z,SHAO J,et al. American Chemical Society Nano\[J\],2017,11(2):2239-2247.
\[24\]YADAV R S,PANDEY S K,PANDEY A S,et al. Journal of Luminescence\[J\],2011,131(9):1998-2003.
\[25\]OZAROWSKI A,MCGARVEY B R,SARKAR A B,et al. Inorganic Chemistry\[J\],1988,27(4):628-635.
\[26\]LI G R,QU D L,ZHAO W X,et al. Electrochemistry Communications\[J\],2007,9(7):1661-1666.
\[27\]QUAN Z,WANG Z,YANG P,et al. Inorganic Chemistry\[J\],2007,46(4):1354-1360.
\[28\]SHARMA V K,GOKYAR S,KELESTEMUR Y,et al. Small\[J\],2015,10(23):4961-4966.
\[29\]PAROBEK D,ROMAN B J,DONG Y,et al. Nano Letters\[J\],2016,16(12):7376-7380.
\[30\]MIR W J,MAHOR Y,LOHAR A,et al. Chemistry of Materials\[J\],2018,30(22):8170-8178.
\[31\]HUANG G,WANG C,XU S,et al. Advanced Materials\[J\],2017,29(29):1700095.
\[32\]LI F,XIA Z,GONG Y,et al. Journal of Materials Chemistry C\[J\],2017,5:9281-9287.
\[33\]GAO D,QIAO B,XU Z,et al. The Journal of Physical Chemistry C\[J\],2017,121(37):20387-20395.
\[34\]ADHIKARI S D,DUTTA S K,DUAAT A,et al. Angewandte Chemie International Edition\[J\],2017,56(30):8746-8750.
\[35\]XU K,LIN C C,XIE X,et al. Chemistry of Materials\[J\],2017,29(10):4265-4272.
\[36\]PAROBEK D,DONG Y,QIAO T,et al. Chemistry of Materials\[J\],2018,30(9):2939-2944.
\[37\]QIAO T,PAROBEK D,DONG Y,et al. Nanoscale\[J\],2019,11:5247-5253.
\[38\]VOLONAKIS G,FILIP M R,HAGHIGHIRAD A A,et al. The Journal of Physical Chemistry Letters\[J\],2016,7(7):1254-1259.
\[39\]RAVI V K,SINGHAI N,NAG A. Journal of Materials Chemistry A\[J\],2018,6:21666-21675.
\[40\]VOLONAKIS G,HAGHIGHIRAD A A,MILOT R L,et al. Journal of Physical Chemistry Letters\[J\],2017,8(4):772-778.
\[41\]LOCARDI F,CIRRGNANO M,BARANOV D,et al. Journal of the American Chemical Society\[J\],2018,140(40):12989-12995.
\[42\]MAHALINGAM V,VETRONE F,NACCACHE R,et al. Advanced Materials\[J\],2009,21(40):4025-4028.
\[43\]MOORE E G,SAMUEL A P,RAYMOND K N. Account of Chemical Research\[J\],2009,42(4):542-552.
\[44\]MIR W J,SHEIKH T,ARFIN H,et al. NPG Asia Matersials\[J\],2020,12:9.
\[45\]HUDRY D,HOWARD I A,POPESCU P,et al. Advanced Matersials\[J\],2019,31(26):1900623.
\[46\]ZHOU D,LIU D,PAN G,et al. Advanced Materials\[J\],2017,29(42):1704149.
\[47\]PAN G,BAI X,YANG D,et al. Nano Letters\[J\],2017,17(12):8005-8011.
\[48\]MILSTEIN T J,KROUPA D M,GAMELIN D R,et al. Nano Letters\[J\],2018,18(6):3792-3799.
\[49\]LEE W,HONG S,KIM S,et al. Journal of Physical Chemistry Letters C\[J\],2019,123(4):2665-2672.
\[50\]LUO B,LI F,XU K,et al. Journal of Materials Chemistry C\[J\],2019,7:2781-2808.
\[51\]MAHOR Y,MIR W J,NAG A. Journal of Physical Chemistry Letters C\[J\],2019,123(25):15787-15793.
\[52\]LOCARD F,SARTORI E,BUHA J,et al. American Chemical Society Energy Letters\[J\],2019,4(8):1976-1982.
\[53\]RAVI V K,SINGHAI N,NAG A,et al. Journal of Materials Chemistry A\[J\],2018,6:21666-21675.
\[54\]MILSTEIN T J,KLUHERZ K T,KROUPA D M,et al. Nano Letters\[J\],2019,19(3):1931-1937.
\[55\]MA J P,CHEN Y M,ZHANG L M,et al. Journal of Materials Chemistry C\[J\],2019,7:3037-3048.
\[56\]ENDE B M,AARTS L,MEIJERINK A. Advanced Materials\[J\],2009,21(30):3073-3077.
\[57\]LI X,DUAN S,LIU H,et al. Journal of Physical Chemistry Letters\[J\],2019,10(3):487-492.
\[58\]YAO J S,GE J,HAN B N,et al. Journal of the American Chemical Society\[J\],2018,140(10):3626-3634.
\[59\]CHENG Y,SHEN C,SHEN L,et al. American Chemical Society Applied Materials Interfaces\[J\],2018,10(25):21434-21444.
\[60\]BABAYIGIT A,THANH D D,ETHIRAJAN A,et al. Scientific Reports\[J\],2016,6:18721.
\[61\]ZHANG X,CAO W,WANG W,et al. Nano Energy\[J\],2016,30:511-516.
\[62\]VITORETI A B F,AGOURAM S,FUENTE M S,et al. Journal of Physical Chemistry Letters C\[J\],2018,122(25):14222-14231.
\[63\]DENG J,WANG H,XUN J,et al. Materials Design\[J\],2020,185:108246.
\[64\]STAM W,GEUCHIES J J,ALTANTZIS T,et al.Journal of the American Chemical Society\[J\],2017,139(11):4087-4097.
\[65\]LI M,ZHANG X,POSTOLEK K M,et al. Journal of Materials Chemistry C\[J\],2018,6:5506-5513.
\[66\]WANG H C,WANG W,TANG A C,et al. Angewandte Chemie\[J\],2017,56(44):13650-13654.
\[67\]LIU S,CHEN Y,ZHAO Y,et al. Materials Letters\[J\],2020,259:126857.
\[68\]SHANNON R D. Acta Crystallogr Section A Foundations and Advances\[J\],1976,32(5):751-767.
\[69\]CHEN J K,MA J P,GUO S Q,et al. Chemistry Materials\[J\],2019,31(11):3974-3983.
\[70\]LU M,ZHANG X,ZHANG Y,et al. Advanced Materials\[J\],2018,30(50):1804691.
\[71\]BEHERA R K,DUTTA A,GHOSH D,et al.Journal of Physical Chemistry Letters\[J\],2019,10(24):7916-7921.
\[72\]BEGUM R,PARIDA M R,ABDELHADY A L,et al. Journal of the American Chemical Society\[J\],2017,139(2):731-737.
\[73\]RAO L,DING X,DU X,et al. Beilstein Journal of Nanotechnology\[J\],2019,10:666-676.
\[74\]MONDAL N,DE A,SAMANTA A. American Chemical Society Energy Letters\[J\],2019,4(1):32-39.
\[75\]DE A,DAS S,MONDAL N,et al. American Chemical Society Materials Letters\[J\],2019,1(1):116-122.
\[76\]BI C,WANG S,LI Q,et al. Journal of Physical Chemistry Letters\[J\],2019,10(5):943-952.
\[77\]CHEN Y C,CHOU H L,LIN J C,et al. Journal of Physical Chemistry Letters C\[J\],2019,123(4):2353-2360.
\[78\]SHEN X,ZHANG Y,KERSHAW S V,et al. Nano Letters\[J\],2019,19(3):1552-1559.
備注/Memo
- 備注/Memo:
-
收稿日期:2021-10-10修回日期:2022-03-04
基金項目:國家自然科學基金資助項目(22005034,21701015,21811530054)
第一作者:顧婉瑩,女,1999年生,碩士
通訊作者:李紅博,男,1982年生,教授,博士生導師,
Email:hongbo.li@bit.edu.cn
更新日期/Last Update:
2023-09-28