免费的av网站_手机免费观看av_男人操女人下面视频_无码人妻一区二区三区一_亚洲一区二区三区四区av_色婷婷在线视频观看_第四色在线视频_国产成人精品无码片区在线_国产一级二级在线观看_日本免费网站视频

[1]溫飛娟,譚春梅,溫奇飛,等.增材制造金屬結(jié)構(gòu)件殘余應(yīng)力的研究進展[J].中國材料進展,2024,43(01):066-78.[doi:10.7502/j.issn.1674-3962.202112026]
 WEN Feijuan,TAN Chunmei,WEN Qifei,et al.Research Progress on Residual Stress of Metal Structure by Additive Manufacturing[J].MATERIALS CHINA,2024,43(01):066-78.[doi:10.7502/j.issn.1674-3962.202112026]
點擊復(fù)制

增材制造金屬結(jié)構(gòu)件殘余應(yīng)力的研究進展()
分享到:

中國材料進展[ISSN:1674-3962/CN:61-1473/TG]

卷:
43
期數(shù):
2024年第01期
頁碼:
066-78
欄目:
出版日期:
2024-01-25

文章信息/Info

Title:
Research Progress on Residual Stress of Metal Structure by Additive Manufacturing
文章編號:
1674-3962(2024)01-0066-13
作者:
溫飛娟譚春梅溫奇飛龍樟鄧榮
1. 西南石油大學(xué)工程學(xué)院,四川 南充 6370002. 西安展實檢測工程有限公司,陜西 西安 710018
Author(s):
WEN Feijuan TAN Chunmei WEN Qifei LONG Zhang DENG Rong
1. School of Engineering, Southwest Petroleum University, Nanchong 637000, China2. Xi’an Zhanshi Testing Engineering Co., Ltd.,Xi’an 710018, China
關(guān)鍵詞:
增材制造殘余應(yīng)力應(yīng)力調(diào)控激光選區(qū)熔化電弧增材制造
Keywords:
additive manufacturing residual stress stress control selective laser melting wire and arc additive manufacturing
分類號:
TG404;TG665
DOI:
10.7502/j.issn.1674-3962.202112026
文獻標志碼:
A
摘要:
增材制造技術(shù)近年來取得了重大進展,金屬增材制造可以三維成型精度高的復(fù)雜形狀零件,在各行業(yè)的應(yīng)用中具有獨特優(yōu)勢。然而,增材制造金屬零件成形時由于高溫度梯度會引起復(fù)雜殘余應(yīng)力。簡要分析了增材制造技術(shù)的特點,重點總結(jié)了激光選區(qū)熔化和電弧增材制造的工藝原理。在此基礎(chǔ)上,詳細綜述了增材制造過程中殘余應(yīng)力的產(chǎn)生機制及測量方法,其中,溫度梯度機制是解釋殘余應(yīng)力產(chǎn)生機制最常用的方法。針對殘余應(yīng)力的測量,分別從無損檢測和破壞性檢測兩方面進行歸納,最常用的破壞性檢測殘余應(yīng)力的方法是輪廓法和鉆孔法,而無損檢測的方法是X射線衍射法。并且總結(jié)了殘余應(yīng)力的調(diào)控方法,包括工藝參數(shù)調(diào)控、預(yù)熱緩冷及重熔調(diào)控、結(jié)構(gòu)設(shè)計調(diào)控、輔助外場調(diào)控、后處理調(diào)控。最后簡要總結(jié)增材制造金屬結(jié)構(gòu)件殘余應(yīng)力研究中亟待解決的問題,并展望了金屬增材制造的發(fā)展方向。
Abstract:
Additive manufacturing has made significant progress in recent years, and metal additive manufacturing can 3D fabricate complex-shaped parts with high precision, which has unique advantages in applications of various industries.However, the high temperature gradient in the forming of metal additive manufacturing parts can cause complex residual stresses. In this review, the characteristics of additive manufacturing technology are briefly analyzed, and the processing principles of selective laser melting and wire and arc additive manufacturing technology are emphatically summarized. On this basis, the generation mechanism and measurement method of residual stress from the additive manufacturing process are reviewed in detail. The temperature gradient mechanism is the most commonly used method to explain the residual stress generation. Regarding the measurement of residual stress, it is summarized from two aspects of non-destructive testing and destructive testing. The common destructive testing methods for residual stress are profile method and drilling method, while the common non-destructive testing method is X-ray diffraction method. The control methods of residual stress are also summarized, including processing parameters optimization,preheating and slow cooling and remelting, structural design,auxiliary external field, post-processing. Finally, a brief summary of the residual stress research in additive manufacturing of metal structural parts and the problems to be solved are summarized, and the development direction of additive manufacturing is prospected.

參考文獻/References:

\[1\]趙劍峰, 謝德巧, 梁繪昕, 等. 南京航空航天大學(xué)學(xué)報\[J\], 2019, 51(1):1-6.ZHAO J F, XIE D Q, LIANG H X, et al. Journal of Nanjing University of Aeronautics & Astronautics\[J\], 2019, 51(1):1-6.\[2\]凌人蛟, 王姍, 陳暉. 機械工程師\[J\], 2019(1): 128-130.LING R J, WANG S, CHEN H. Mechanical Engineer\[J\], 2019(1): 128-130.\[3\]張咪娜. 增材制造CoCrMoNbTi與AlCoCuFeNi高熵合金及其組織性能研究\[D\]. 北京: 北京科技大學(xué), 2019.ZHANG M N. Additive Manufacturing of CoCrMoNbTi and AlCoCuFeNi High Entropy Alloys and Microstructure and Properties Research\[D\]. Beijing: University of Science and Technology Beijing, 2019.\[4\]GOPAN V, WINS K, SURENDRAN A. CIRP Journal of Manufacturing Science and Technology\[J\], 2021, 32: 228-248.\[5\]楊冰, 廖貞, 吳圣川, 等. 交通運輸工程學(xué)報\[J\], 2021, 21(1): 132-153.YANG B, LIAO Z, WU S C, et al. Journal of Traffic and Transportation Engineering\[J\], 2021, 21(1): 132-153.\[6\]劉江偉, 國凱, 王廣春, 等. 激光雜志\[J\], 2020, 41(3): 6-16.LIU J W, GUO K, WANG G C, et al. Laser Journal\[J\], 2020, 41(3): 6-16.\[7\]周玥丞, 趙陽. 建筑結(jié)構(gòu)學(xué)報\[J\], 2021, 42(6): 15-25.ZHOU Y C, ZHAO Y. Journal of Building Structures\[J\], 2021, 42(6): 15-25.\[8\]樊恩想, 劉小欣, 廖文俊, 等. 機械制造\[J\], 2019, 57(4): 1-6+10.FAN E X, LIU X X, LIAO W J, et al. Machinery\[J\], 2019, 57(4): 1-6+10.\[9\]PRATHEESH KUMAR S, ELANGOVAN S, MOHANRAJ R, et al. Materials Today: Proceedings\[J\], 2021, 46: 7907-7920.\[10\]秋大闖, 李多生, 葉寅, 等. 功能材料\[J\], 2019, 50(3): 3049-3058.QIU D C, LI D S, YE Y, et al. Journal of Functional Materials\[J\], 2019, 50(3): 3049-3058.\[11\]常坤, 梁恩泉, 張韌, 等. 材料導(dǎo)報\[J\], 2021, 35(3): 3176-3182.CHANG K, LIANG E Q, ZHANG R, et al. Materials Reports\[J\], 2021, 35(3): 3176-3182.\[12\]楊亮亮. 基于高速攝影技術(shù)的激光選區(qū)熔化飛濺行為和熔池特征研究\[D\]. 武漢: 華中科技大學(xué), 2019.YANG L L. Research on Laser Selective Melting Splash Behavior and Melt Pool Characteristics Based on HighSpeed Photography Technology\[D\]. Wuhan: Huazhong University of Science and Technology, 2019.\[13\]祝弘濱, 劉昱. 現(xiàn)代城市軌道交通\[J\], 2019(10): 77-81.ZHU H B, LIU Y. Modern Urban Transit\[J\], 2019(10): 77-81.\[14\]萬志遠, 陳銀平. 模具技術(shù)\[J\], 2020(1): 59-63.WAN Z Y, CHEN Y P. Die and Mould Technology\[J\], 2020(1): 59-63.\[15\]王勇, 周雪峰. 激光技術(shù)\[J\], 2021, 45(4): 475-484.WANG Y, ZHOU X F. Laser Technology\[J\], 2021, 45(4): 475-484.\[16\]ACEVEDO R, SEDLAK P, KOLMAN R, et al. Journal of Materials Research and Technology\[J\], 2020, 9(4): 9457-9477.\[17\]樂方賓, 葉寒, 劉勇. 江西科學(xué)\[J\], 2020, 38(2): 157-161+262.LE F B, YE H, LIU Y. Jiangxi Science\[J\], 2020, 38(2): 157-161+262.\[18\]謝瑞山, 陳高強, 史清宇. 精密成形工程\[J\], 2019, 11(4): 15-20.XIE R S, CHEN G Q, SHI Q Y. Journal of Netshape Forming Engineering\[J\], 2019, 11(4): 15-20.\[19\]馬振書, 陳廣森, 馬東璽, 等. 兵器材料科學(xué)與工程\[J\], 2016, 39(6): 119-124.MA Z S, CHEN G S, MA D X, et al. Ordnance Material Science and Engineering\[J\], 2016, 39(6): 119-124.\[20\]姜海燕, 林衛(wèi)凱, 吳世彪, 等. 機械工程與自動化\[J\], 2019(5):223-226.JIANG H Y, LIN W K, WU S B, et al. Mechanical Engineering & Automation\[J\], 2019(5): 223-226.\[21\]SHIYAS K A, RAMANUJAM R. Materials Today: Proceedings\[J\], 2021, 46: 1429-1436.\[22\]HE Q Y, XIA H Q, LIU J H, et al. Materials & Design\[J\], 2020, 196: 109115.\[23\]ZHANG Z D, HUANG Y Z, ADHITAN R K, et al. Optics & Laser Technology\[J\], 2018, 109: 297-312.\[24\]姚波, 馬良, 陳靜, 等. 機械科學(xué)與技術(shù)\[J\], 2022, 41(6): 961-970. YAO B, MA L, CHEN J, et al. Mechanical Science and Technology for Aerospace Engineering\[J\], 2022, 41(6): 961-970.\[25\]余圣甫, 禹潤縝, 何天英, 等. 中國材料進展\[J\], 2021, 40(3): 198-209.YU S F, YU R Z, HE T Y, et al. Materials China\[J\], 2021, 40(3): 198-209.\[26\]DING D H, ZHANG S M, LU Q H, et al. Materials Today Communications\[J\], 2021, 27(1): 102430.\[27\]SUN J M, HENSEL J, KHLER M, et al. Journal of Manufacturing Processes\[J\], 2021, 65(5): 97-111.\[28\]李九霄, 李鳴佩, 楊東野, 等. 機械工程材料\[J\], 2018, 42(8): 1-6.LI J X, LI M P, YANG D Y, et al. Materials for Mechanical Engineering\[J\], 2018, 42(8): 1-6.\[29\]LI C, LIU Z Y, FANG X Y, et al. Procedia CIRP\[J\], 2018, 71: 348-353.\[30\]陳勇, 陳輝, 姜亦帥, 等. 材料工程\[J\], 2019, 47(11): 1-10.CHEN Y, CHEN H, JIANG Y S, et al. Journal of Materials Engineering\[J\], 2019, 47(11): 1-10.\[31\]杜暢, 張津, 連勇, 等. 表面技術(shù)\[J\], 2019, 48(1): 200-207.DU C, ZHANG J, LIAN Y, et al. Surface Technology\[J\], 2019, 48(1): 200-207.\[32\]PIDGE A P, KUMAR H. Materials Today: Proceedings\[J\], 2020, 21: 1689-1694.\[33\]HNNIGE J R, COLRGROVE P A, AHMAD B, et al. Materials & Design\[J\], 2018, 150: 193-205.\[34\]AZARMI F, SEVOSTIANOV I. Current Opinion in Chemical Engineering\[J\], 2020, 28: 21-27.\[35\]LIU C, LIN C H, WANG J F, et al. Journal of Manufacturing Processes\[J\], 2020, 56: 474-481.\[36\]ROBINSON J, ASHTON I, FOX P, et al. Additive Manufacturing\[J\], 2018, 23: 13-24.\[37\]MAROLA S, BOSIA S, VELTOR A, et al. Materials & Design\[J\], 2021, 202: 109550.\[38\]AN K, YUAN L, DIAL L, et al. Materials & Design\[J\], 2017, 135: 122-132.\[39\]SHEN C, REID M, LISS K D, et al. Additive Manufacturing\[J\], 2019, 29: 100774.\[40\]ZHAO L, SANTOS M J G, DOLIMONT A, et al. Additive Manufacturing\[J\], 2020, 36: 101499.\[41\]ZHAN Y, LIU C, ZHANG J J, et al. Materials Science and Engineering: A\[J\], 2019, 762: 138093.\[42\]郭玉. 激光增材制造GH4169高溫合金溫度場應(yīng)力場研究\[D\]. 呼和浩特:內(nèi)蒙古工業(yè)大學(xué), 2020.GUO Y. Study on Temperature and Stress Field of Laser Additive Manufacturing of GH4169 Superalloy\[D\]. Huhhot:Inner Mongolia University of Technology, 2020.\[43\]李桂偉. 金屬玻璃選區(qū)激光熔化與超聲增材制造研究\[D\]. 長春:吉林大學(xué), 2020.LI G W. Research on Selective Laser Melting and Ultrasonic Additive Manufacturing of Metallic Glass\[D\]. Changchun: Jilin University, 2020.\[44\]BARTLETT J L, CROOM B P, BUPDICK J, et al. Additive Manufacturing\[J\], 2018, 22: 1-12.\[45\]BIEGLAR M, GRAF B, RETHMEIER M. Additive Manufacturing\[J\], 2018, 20: 101-110.\[46\]趙宇輝, 趙吉賓, 王志國, 等. 真空\[J\], 2020, 57(3): 73-79.ZHAO Y H, ZHAO J B, WANG Z G, et al. Vacuum\[J\], 2020, 57(3): 73-79.\[47\]BHUVANESH K M, SATHIYA P. ThinWalled Structures\[J\], 2021, 159: 107228.\[48\]FANG Z C, WU Z L, HUANG C G, et al. Optics & Laser Technology\[J\], 2020, 129: 106283.\[49\]NADAMMAL N, MISHUROVE T, FRITSCH T, et al. Additive Manufacturing\[J\], 2021, 38: 101792.\[50\]RASUL N G, KALYAN P B, SAHOO S. Materials Today: Proceedings\[J\], 2021, 41: 445-450.\[51\]BIAN P Y, SHI J, LIU Y, et al. Optics & Laser Technology\[J\], 2020, 132: 106477.\[52\]CHEN Q, LIU J K, LIANG X, et al. Computer Methods in Applied Mechanics and Engineering\[J\], 2020, 360: 112719.\[53\]MATTHEWS M J, ROEHLING T T, KHAIRALIAH S A, et al. Procedia CIRP\[J\], 2020, 94: 200-204.\[54\]PROMOPPATUM P, YAO S C. Journal of Manufacturing Processes\[J\], 2020, 49: 247-259.\[55\]李少海, 李昭青. 特種鑄造及有色合金\[J\], 2018, 38(2): 160-163.LI S H, LI Z Q. Special Casting & Nonferrous Alloys\[J\], 2018, 38(2): 160-163.\[56\]莊榮宇. 面向增材制造的自支撐結(jié)構(gòu)多尺度拓撲優(yōu)化方法研究\[D\]. 武漢:華中科技大學(xué), 2017.ZHUANG R Y. Research on MultiScale Topology Optimization Method of SelfSupporting Structure for Additive Manufacturing\[D\]. Wuhan: Huazhong University of Science and Technology, 2017.\[57\]秦天, 葛沈瑜, 黃進浩, 等. 材料開發(fā)與應(yīng)用\[J\], 2016, 31(2): 94-102.QIN T, GE S Y, HUANG J H, et al. Development and Application of Materials\[J\], 2016, 31(2): 94-102.\[58\]SUN L, REN X B, HE J Y, et al. Journal of Materials Science & Technology\[J\], 2021, 67: 11-22.\[59\]CHENG L, LIANG X, BAI J X, et al. Additive Manufacturing\[J\], 2019, 27: 290-304.\[60\]蔣聰, 鮑毅超. 機械工程與自動化\[J\], 2021(1): 29-30+33.JIANG C, BAO Y C. Mechanical Engineering & Automation\[J\], 2021(1): 29-30+33.\[61\]任朝暉, 劉振, 張小雙, 等. 東北大學(xué)學(xué)報(自然科學(xué)版)\[J\], 2019, 40(11): 1590-1594+1599.REN Z H, LIU Z, ZHANG X S, et al. Journal of Northeastern University (Natural Science)\[J\], 2019, 40(11): 1590-1594+1599.\[62\]許欣欣, 賀文雄, 秦晉, 等. 中國表面工程\[J\], 2019, 32(5): 127-135.XU X X, HE W X, QIN J, et al. China Surface Engineering\[J\], 2019, 32(5): 127-135.\[63\]ZHOU C P, WANG J D, GUO C H, et al. International Journal of Mechanical Sciences\[J\], 2021, 197: 106334.\[64\]KALENTICS N, BOILLAT E, PEYRE P, et al. Materials & Design\[J\], 2017, 130: 350-356.\[65\]HNNIGE J R, COLEGROVE P A, GANGULY S, et al. Additive Manufacturing\[J\], 2018, 22: 775-783.\[66\]PRAGANA J P M, SAMPIAO R F V, BRAGANCA I M F, et al. Advances in Industrial and Manufacturing Engineering\[J\], 2021, 2: 100032.\[67\]ROEHLING J D, SMITH W L, ROEHLING T T, et al. Additive Manufacturing\[J\], 2019, 28: 228-235.\[68\]ZHANG S, GONG M C, ZENG X Y, et al. Journal of Materials Processing Technology\[J\], 2021, 293: 117077.\[69\]COLEGROVE P A, DONOGHUE J, MARTINA F, et al. Scripta Materialia\[J\], 2017, 135: 111-118.\[70\]MALEKI E, BAGHERIFARD S, BANDINI M, et al. Additive Manufacturing\[J\], 2021, 37: 101619.\[71\]CHI J X, CAI Z Y, WAN Z D, et al. Surface and Coatings Technology\[J\], 2020, 396: 125908.\[72\]OB(yǎng)RIEN J M, MONTGOMERY S, YAGHI A, et al. CIRP Journal of Manufacturing Science and Technology\[J\], 2021, 32: 266-276.

備注/Memo

備注/Memo:
收稿日期:2021-12-28修回日期:2022-05-31基金項目:南充市西南石油大學(xué)市校科技戰(zhàn)略合作專項(23XNSYSX0112, 23XNSYSX0092);教育部2021年第一批產(chǎn)學(xué)合作協(xié)同育人項(202101398047,202102500012)第一作者:溫飛娟,女,1993年生,講師通訊作者:龍樟,男,1992年生,講師,Email:longzhang@swpu.edu.cn
更新日期/Last Update: 2023-12-29
免费的av网站_手机免费观看av_男人操女人下面视频_无码人妻一区二区三区一_亚洲一区二区三区四区av_色婷婷在线视频观看_第四色在线视频_国产成人精品无码片区在线_国产一级二级在线观看_日本免费网站视频
欧美精品第1页| 亚洲免费在线电影| 午夜精品久久久久久久久久久 | 午夜日韩在线观看| 久草这里只有精品视频| 久久伊人中文字幕| 在线免费一区三区| 国产精品你懂的在线欣赏| 日本不卡一区二区| 在线观看你懂的视频| 色综合天天综合网天天狠天天| 国产色婷婷亚洲99精品小说| 亚洲成人一区二区在线观看| 99视频一区二区| 五月激情四射婷婷| 日韩一区二区高清| 日韩在线一二三区| 亚洲视频天天射| www亚洲色图| 精品理论电影在线观看 | 双性尿奴穿贞c带憋尿| 欧洲一区在线观看| 综合久久给合久久狠狠狠97色| 精品一区二区三区免费播放| av鲁丝一区鲁丝二区鲁丝三区| 欧美性猛片aaaaaaa做受| 中文字幕在线不卡视频| 国产精品影视网| 国产三级短视频| 久久综合久久久久88| 肉肉av福利一精品导航| 精品久久久久一区二区| 欧美三级三级三级爽爽爽| 国产欧美日韩久久| 欧美日韩亚洲综合在线 | 国产精品一区二区人妻喷水| 欧美日韩在线播放三区四区| 亚洲另类在线制服丝袜| proumb性欧美在线观看| 亚洲视频重口味| 精品日韩99亚洲| 久久精品国产色蜜蜜麻豆| 中文字幕xxx| 日韩欧美一区在线| 麻豆一区二区三| 男人操女人动态图| 精品乱码亚洲一区二区不卡| 黄色小说综合网站| 成人午夜免费影院| 国产日韩视频一区二区三区| 高清日韩电视剧大全免费| 日本一级片免费| 自拍偷自拍亚洲精品播放| 99久久国产综合精品麻豆| 国产免费久久久久| 亚洲蜜臀av乱码久久精品| 91猫先生在线| 欧美精品丝袜中出| 亚洲综合无码一区二区| 无码国产69精品久久久久网站| 在线电影一区二区三区| 日韩二区三区四区| 无码人妻aⅴ一区二区三区69岛| 2022国产精品视频| 国产91露脸合集magnet| 欧美羞羞免费网站| 午夜亚洲福利老司机| 日本黄色特级片| 久久精品亚洲麻豆av一区二区| 懂色av一区二区三区蜜臀| 9.1人成人免费视频网站| 亚洲午夜久久久久久久久电影院| 东京热av一区| 亚洲精品一区二区三区影院| 国产精品资源在线| 一本色道久久综合亚洲aⅴ蜜桃| 亚洲精品国产精华液| 三级男人添奶爽爽爽视频| 久久久不卡网国产精品二区| 成人h版在线观看| 欧美日韩久久久| 久草在线在线精品观看| 欧美一级特黄高清视频| 亚洲一区中文日韩| 久久精品视频18| 中文字幕精品一区二区精品绿巨人| 99久久久精品| 在线观看日韩一区| 美女www一区二区| 欧美一级片在线视频| 亚洲午夜日本在线观看| 日韩影视一区二区三区| 亚洲色图20p| gv天堂gv无码男同在线观看| 一区二区三区影院| 成人小视频免费看| 亚洲成人黄色小说| 国产中文字幕久久| 亚洲电影视频在线| 女人十八毛片嫩草av| 亚洲综合免费观看高清完整版 | 夫妻性生活毛片| 一区二区三区在线观看欧美| 国产人妻大战黑人20p| 夜夜爽夜夜爽精品视频| 亚洲黄色网址大全| 亚洲成av人片在www色猫咪| 又嫩又硬又黄又爽的视频| 午夜久久久久久久久久一区二区| 国产免费嫩草影院| 亚洲精品日韩综合观看成人91| 精品少妇一区二区三区免费观| 亚洲免费在线播放| av片在线免费看| 午夜a成v人精品| 欧美影片第一页| 99热精品国产| 国产精品美日韩| 免费成人深夜天涯网站| 蜜臀av性久久久久蜜臀av麻豆| 欧美美女网站色| 一卡二卡三卡四卡五卡| 亚洲区小说区图片区qvod| 免费看特级毛片| 国产高清久久久| 国产午夜亚洲精品羞羞网站| 蜜桃传媒一区二区亚洲av| 午夜av一区二区三区| 在线电影欧美成精品| 97人妻精品一区二区三区免费| 亚洲国产色一区| 欧美日韩一区二区三区免费看| 91麻豆高清视频| 亚洲激情六月丁香| 欧美中文字幕不卡| 99精品欧美一区二区三区小说| 国产精品不卡在线| 久久久精品少妇| 成人国产一区二区三区精品| 国产精品激情偷乱一区二区∴| 91香蕉视频污在线观看| 国产精品99久久久久久有的能看| 国产三级精品三级| 99热这里只有精品4| 从欧美一区二区三区| 国产精品福利一区| 91久久精品一区二区三| 69久久精品无码一区二区| 夜夜亚洲天天久久| 欧美老女人在线| 呦呦视频在线观看| 免费看欧美女人艹b| 精品欧美一区二区在线观看| 国产又粗又黄又猛| 国产成人鲁色资源国产91色综| 国产精品电影院| 在线日韩国产精品| 国产精品91av| 免费观看久久久4p| 久久婷婷色综合| 亚洲天堂网av在线| a级大片免费看| 丝袜诱惑亚洲看片| 精品美女在线播放| 一本一本久久a久久| av在线免费不卡| 亚洲高清久久久| 日韩视频不卡中文| 东京热无码av男人的天堂| 成人久久久精品乱码一区二区三区| 亚洲视频一区二区在线| 欧美日韩国产高清一区二区三区| 9.1成人看片| 国产精品1024| 亚洲综合色在线| 日韩亚洲欧美综合| 亚洲区一区二区三| 性感美女一区二区三区| 欧美bbbbb| 国产精品不卡视频| 欧美日韩国产欧美日美国产精品| 女人被狂躁c到高潮| 国产98色在线|日韩| 亚洲超丰满肉感bbw| 久久精品一区二区| 欧美亚洲一区二区在线观看| 成人手机在线免费视频| 国产一区二区91| 亚洲自拍都市欧美小说| 欧美成人三级在线| 国产精品国产高清国产| 国产精品jizz| av午夜一区麻豆| 日韩成人一级大片| 国产精品午夜免费| 91麻豆精品国产无毒不卡在线观看 | 丁香婷婷深情五月亚洲| 婷婷一区二区三区| 中文av一区特黄| 欧美一级高清大全免费观看|