免费的av网站_手机免费观看av_男人操女人下面视频_无码人妻一区二区三区一_亚洲一区二区三区四区av_色婷婷在线视频观看_第四色在线视频_国产成人精品无码片区在线_国产一级二级在线观看_日本免费网站视频

[1]劉艷明,賈新碌,張依偲,等.鈦及鈦鋁合金的高溫氧化行為與防護(hù)[J].中國材料進(jìn)展,2023,42(09):699-721.[doi:10.7502/j.issn.1674-3962.202204007]
 LIU Yanming,JIA Xinlu,ZHANG Yicai,et al.High Temperature Oxidation Behaviors and Protection of Ti-Based and TiAl-Based Alloys[J].MATERIALS CHINA,2023,42(09):699-721.[doi:10.7502/j.issn.1674-3962.202204007]
點(diǎn)擊復(fù)制

鈦及鈦鋁合金的高溫氧化行為與防護(hù)()
分享到:

中國材料進(jìn)展[ISSN:1674-3962/CN:61-1473/TG]

卷:
42
期數(shù):
2023年第09期
頁碼:
699-721
欄目:
出版日期:
2023-09-30

文章信息/Info

Title:
High Temperature Oxidation Behaviors and Protection of Ti-Based and TiAl-Based Alloys
文章編號(hào):
1674-3962(2023)09-0699-23
作者:
劉艷明12賈新碌12張依偲12趙興興12汪欣3
1. 西安石油大學(xué)材料科學(xué)與工程學(xué)院,陜西 西安 710065 2. 西安市高性能油氣田材料重點(diǎn)實(shí)驗(yàn)室,陜西 西安 710065 3. 西北有色金屬研究院,陜西 西安 710016
Author(s):
LIU Yanming12 JIA Xinlu12 ZHANG Yicai12 ZHAO Xingxing12 WANG Xin3
1. College of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China 2. Xi’an Key Laboratory of High Performance Oil and Gas Field Materials, Xi’an 710065, China 3. Northwest Institute for Non-Ferrous Metal Research, Xi’an 710016, China
關(guān)鍵詞:
鈦合金高溫氧化合金化高溫防護(hù)涂層失效機(jī)理
Keywords:
titanium alloys high temperature oxidation alloying high temperature protection coatings failure mechanisms
分類號(hào):
TG146.23; TG178
DOI:
10.7502/j.issn.1674-3962.202204007
文獻(xiàn)標(biāo)志碼:
A
摘要:
鈦及鈦鋁合金在航空航天領(lǐng)域應(yīng)用廣泛,但抗高溫氧化性能不足是制約其發(fā)展的主要原因之一;趲追N典型鈦合金(工業(yè)純鈦、近α-Ti合金、α+β鈦合金、β鈦合金)和鈦鋁合金(γ-TiAl、Ti3Al)的高溫氧化行為、氧化特點(diǎn)及失效機(jī)制,回顧了改善鈦及鈦鋁合金抗高溫氧化性能的主要途徑,即合金化及表面改性。合金化需優(yōu)化合金成分及含量,對(duì)鈦及鈦鋁合金的抗高溫氧化性能改善有限。表面改性包括涂覆高溫防護(hù)涂層、表面合金化及表面強(qiáng)化,介紹了鈦及鈦鋁合金表面9種防護(hù)涂層的發(fā)展現(xiàn)狀,即Al涂層、Al-X涂層、Ti-Al-X涂層、MCrAlY涂層、準(zhǔn)晶涂層、高熵合金涂層、惰性氧化物陶瓷涂層、搪瓷涂層及氮化物陶瓷涂層,總結(jié)了這些涂層的制備方法、高溫防護(hù)機(jī)理、改性手段、失效機(jī)制及應(yīng)用局限。此外,介紹了4種表面合金化技術(shù)(熱擴(kuò)散、離子注入、預(yù)氧化及激光表面合金化)及表面強(qiáng)化技術(shù)在鈦及鈦鋁合金高溫防護(hù)中的應(yīng)用現(xiàn)狀,F(xiàn)階段,結(jié)合計(jì)算機(jī)模擬、機(jī)器學(xué)習(xí)等先進(jìn)手段,設(shè)計(jì)制備新型高溫鈦合金結(jié)構(gòu)材料,同時(shí)設(shè)計(jì)和發(fā)展具有優(yōu)異綜合性能的高溫防護(hù)涂層及相應(yīng)的高效制備方法,是促進(jìn)鈦及鈦鋁合金高溫應(yīng)用的發(fā)展方向。
Abstract:
Titanium and titanium aluminides alloys have been widely used in the aerospace industry, but the lack of high temperature oxidation resistance is one of the main reasons that restrict their development. Based on the high temperature oxidation behavior, oxidation characteristics and failure mechanisms of several typical Ti-based alloys (industrial pure titanium, near αTi, α+β-Ti, β-Ti) and TiAl-based alloys (γ-TiAl, Ti3Al), the main ways (i.e,alloying and surface modification) to improve their high temperature oxidation resistance are reviewed. Optimizing the composition and content of the alloy element is necessary for alloying, which has limited effect on improving the high temperature oxidation resistance of Ti-based alloys and TiAl-based alloys. Surface modification includes applying high temperature protective coating, surface alloying and surface strengthening. Here, the development status of the nine typical high temperature protective coating systems for the Ti-based and TiAl-based alloys is reviewed,including Al coatings, Al-X coatings, Ti-Al-X coatings, MCrAlY coatings, quasicrystalline coatings, high-entropy alloy coatings, inert oxide ceramic coatings, enamel coating and nitride ceramic coatings. Furthermore, their processing methods, high temperature protection mechanisms, modification methods, failure mechanisms and application limitations are summarized. In addition, the application status of surface alloying technologies namely thermal diffusion, ion implantation, pre-oxidation and laser surface alloying as well as the surface strengthening technology in the high temperature protection of Ti-based and TiAl-based alloys are introduced. At this stage, advanced methods such as computer simulation and machine learning can be combined to design and prepare new high-temperature Ti-based structural materials. At the same time, developing the high-temperature protective coatings with excellent comprehensive properties and the corresponding efficient preparation methods is the key to promote the high-temperature application of Ti-based and TiAl-based alloys.

參考文獻(xiàn)/References:

\[1\]劉世鋒,宋璽,薛彤,等.航空材料學(xué)報(bào)\[J\],2020,40(3):77-94. LIU S F,SONG X,XUE T,et al. Journal of Aeronautical Materials\[J\],2020,40(3):77-94. \[2\]WANG S X, LIU X, YIN X L, et al. Surface and Coatings Technology\[J\], 2020, 404: 126473. \[3\]GUO W, WANG H, PENG P, et al. Corrosion Science\[J\], 2020, 170: 108655. \[4\]PAN Y, LU X, HUI T L, et al. Journal of Materials Science\[J\], 2021, 56(1): 815-827. \[5\]WEI D B, ZHANG P Z, YAO Z J, et al. Corrosion Science\[J\], 2013, 66: 43-50. \[6\]DAI J J, ZHANG N L, WANG A M, et al. Journal of Alloys and Compounds\[J\], 2018, 765: 46-57. \[7\]李旭, 彭小燕, 段雨露, 等. 中國有色金屬學(xué)報(bào)\[J\], 2013, 23(8): 2190-2199. LI X, PENG X Y, DUAN Y L, et al. Chinese Journal of Nonferrous Metals\[J\], 2013, 23(8): 2190-2199. \[8\]劉艷明,趙興興,汪欣,等. 稀有金屬材料與工程\[J\], 2022, 51(4): 1332-1340. LIU Y M, ZHAO X X, WANG X, et al. Rare Metal Materials and Engineering\[J\], 2022, 51(4): 1332-1340. \[9\]DAI J J, ZHU J Y, CHEN C Z, et al. Journal of Alloys and Compounds\[J\], 2016, 685: 784-798. \[10\]GEMELLI E, CAMARGO N H A. Materia\[J\], 2007, 12(3): 525-531. \[11\]向午淵, 江海濤, 田世偉. 金屬功能材料\[J\], 2020, 27(3): 33-39. XIANG W Y, JIANG H T, TIAN S W. Metallic Functional Materials\[J\], 2020, 27(3): 33-39. \[12\]黃德明. 鋼鐵釩鈦\[J\], 2010, 31(1): 11-16. HUANG D M. Iron Steel Vanadium Titanium\[J\], 2010, 31(1): 11-16. \[13\]WANG X, LI S Q, LIU J N. Materials Science Forum\[J\], 2016, 849: 347-352. \[14\]崔文芳, 魏海榮, 羅國珍, 等. 稀有金屬材料與工程\[J\], 1997, 2: 31-35. CUI W F, WEI H R, LUO G Z, et al. Rare Metal Materials and Engineering\[J\], 1997, 2: 31-35. \[15\]郭建忠,劉小花,劉娣,等. 世界有色金屬\[J\], 2019, 18: 1-3. GUO J Z, LIU X H, LIU D, et al. Word Nonferrous Metals\[J\], 2019, 18: 1-3. \[16\]賈新云, 劉培英, 陶冶. 材料工程\[J\], 2003, 6: 18-22. JIA X Y, LIU P Y, TAO Y. Journal of Materials Engineering\[J\], 2003, 6: 18-22. \[17\]湯海芳, 趙永慶, 洪權(quán), 等. 稀有金屬材料與工程\[J\], 2012, 41(7): 1226-1230. TANG H F, ZHAO Y Q, HONG Q, et al. Rare Metal Materials and Engineering\[J\], 2012, 41(7): 1226-1230. \[18\]周紅偉, 何宜柱, 張文學(xué), 等. 材料研究學(xué)報(bào)\[J\], 2011, 25(3): 295-302. ZHOU H W, HE Y Z, ZHANG W X, et al. Chinese Journal of Materials Research\[J\], 2011, 25(3): 295-302. \[19\]楊佩, 康聰, 李維. 湖南有色金屬\[J\], 2020, 36(1): 45-47+60. YANG P, KANG C, LI W. Hunan Nonferrous Metals\[J\], 2020, 36(1): 45-47+60. \[20\]GULERYUZ H, CIMENOGLU H. Journal of Alloys and Compounds\[J\], 2009, 472(1): 241-246. \[21\]DONG E, YU W, CAI Q, et al. Oxidation of Metals\[J\], 2017, 88(5/6): 719-732. \[22\]陳永楠, 楊雯清, 楊澤慧, 等. 稀有金屬材料與工程\[J\], 2019, 48(11): 3608-3614. CHEN Y N, YAN W Q, YANG Z H, et al. Rare Metal Materials and Engineering\[J\], 2019, 48(11): 3608-3614. \[23\]ZHANG Z, WANG J N, SHAO A H, et al. Science China Materials\[J\], 2020, 63(12): 2443-2455. \[24\]ZHAO Y Q, QU H L, ZHU K Y, et al. Materials Science and Engineering: A\[J\], 2001, 316(1/2): 211-216. \[25\]冉隆城, 楊峰, 劉靜, 等. 材料保護(hù)\[J\], 2018, 51(5): 48-53. RAN L C, YANG F, LIU J, et al. Materials Protection\[J\], 2018, 51(5): 48-53. \[26\]李旭升, 毛小南, 辛社偉, 等. 稀有金屬材料與工程\[J\], 2017, 46(8): 2313-2317. LI X S, MAO X N, XIN S W, et al. Rare Metal Materials and Engineering\[J\], 2017, 46(8): 2313-2317. \[27\]劉俊, 劉艷, 徐春梅, 等. 硅酸鹽通報(bào)\[J\], 2011, 30(4): 982-987. LIU J, LIU Y, XU C M, et al. Bulletin of the Chinese Ceramic Society\[J\], 2011, 30(4): 982-987. \[28\]QIAN Y H, LI M S, LU B. Transactions of Nonferrous Metals Society of China\[J\], 2009, 19(3): 525-529. \[29\]PARK S Y, SEO D Y, KIM S W, et al. Intermetallics\[J\], 2016, 74: 8-14. \[30\]劉杰, 薛祥義, 楊劼人, 等. 稀有金屬材料與工程\[J\], 2014, 43(12): 3031-3036. LIU J, XUE X Y, YANG J R, et al. Rare Metal Materials and Engineering\[J\], 2014, 43(12): 3031-3036. \[31\]WEN P C, YUAN L J, TAO R, et al. Applied Surface Science\[J\], 2022, 604: 154535. \[32\]汪欣, 李爭(zhēng)顯, 杜繼紅. 鈦工業(yè)進(jìn)展\[J\], 2017, 34(6): 1-8. WANG X, LI Z X, DU J H. Titanium Industry Progress\[J\], 2017, 34(6): 1-8. \[33\]王孟光, 陳志強(qiáng), 包淑娟. 材料開發(fā)與應(yīng)用\[J\], 2011, 26(6): 22-24. WANG M G, CHEN Z Q, BAO S J. Development and Application of Materials\[J\], 2011, 26(6): 22-24. \[34\]BROTZU A, FELLI F, PILONE D. Intermetallics\[J\], 2014, 54: 176-180. \[35\]JIANG H R, WANG Z L, MA W S, et al. Transactions of Nonferrous Metals Society of China\[J\], 2008, 18(3): 512-517. \[36\]MAEDA K, SUZUKI S, UEDA K, et al. Journal of Alloys and Compounds\[J\], 2019, 776: 519-528. \[37\]XU J Y, SHI Z Z, ZHANG Z B, et al. Corrosion Science\[J\], 2020, 166: 108430. \[38\]SONG Y J, FU B G, DONG T S, et al. Materials\[J\], 2020, 13(5): 1082. \[39\]李虹, 王紹青, 葉恒強(qiáng). 物理學(xué)報(bào)\[J\], 2009, 58(S1): 224-229. LI H, WANG S Q, YE H Q. Acta Physica Sinica\[J\], 2009, 58(S1): 224-229. \[40\]JIANG H, HIROHASI M, LU Y, et al. Scripta Materialia\[J\], 2002, 46(9): 639-643. \[41\]ROY T K, BALASUBRAMANIAM R, GHOSH A. Metallurgical and Materials Transactions A\[J\], 1996, 27(12): 3993-4002. \[42\]ZHOU C G, VANG Y, GONG S K, et al. Acta Aeronautica et Astronautica Sinica\[J\], 2001, 22(1): 73-77. \[43\]JIANG Z H, ZHAO C Z, YU J J, et al. China Foundry\[J\], 2018, 15(1): 17-22. \[44\]NEELAM N S, BANUMATHY S, BHATTACHARJEE A, et al. Corrosion Science\[J\], 2020, 163: 108300. \[45\]PFLUMM R, DONCHEV A, MAYER S, et al. Intermetallics\[J\], 2014, 53: 45-55. \[46\]宋慶功, 董珊珊, 胡燁, 等. 材料導(dǎo)報(bào)\[J\], 2021, 35(2): 2057-2063. SONG Q G, DONG S S, HU Y, et al. Materials Reports\[J\], 2021, 35(2): 2057-2063. \[47\]GADDAM R, SEFER B, PEDERSON R, et al. Materials Characterization\[J\], 2015, 99: 166-174. \[48\]XU Y Q, FU Y, LI J, et al. Journal of Materials Science & Technology\[J\], 2021, 93: 147-156. \[49\]BRICE D A, SAMIMI P, GHAMARIAN I, et al. Corrosion Science\[J\], 2016, 112: 338-346. \[50\]BOEHLERT C J, COWEN C J, TAMIRISAKANDALA S, et al. Scripta Materialia\[J\], 2006, 55(5): 465-468. \[51\]王斌. 稀土添加對(duì)粉末冶金鈦合金組織與性能影響研究\[D\]. 長(zhǎng)沙: 中南大學(xué), 2011. WANG B. Effect of Rare Earth Addition on Microstructure and Properties of Powder Metallurgy Titanium Alloy\[D\]. Changsha: Central South University, 2011. \[52\]賴旭平, 李天方, 劉瑞, 等. 材料導(dǎo)報(bào)\[J\], 2021, 35(S1): 374-377. LAI X P, LI T F, LIU R, et al. Materials Reports\[J\], 2021, 35(S1): 374-377. \[53\]GONG X, CHEN R R, WANG Y, et al. Frontiers in Materials\[J\], 2021, 8: 710431. \[54\]WU Y, HAGIHARA K, UMAKOSHI Y. Intermetallics\[J\], 2004, 12(5): 519-532. \[55\]LUAN J H, JIAO Z, CHEN G, et al. Journal of Alloys and Compounds\[J\], 2014, 602: 235-240. \[56\]車晉達(dá), 姜貝貝, 王清, 等. 稀有金屬材料與工程\[J\], 2018, 47(5): 1471-1477. CHE J D, JIANG B B, WANG Q, et al. Rare Metal Materials and Engineering\[J\], 2018, 47(5): 1471-1477. \[57\]王麗杰. 硅釔鉭雙摻雜對(duì)γTiAl基合金抗氧化性和延性的影響\[D\]. 天津: 中國民航大學(xué), 2019. WANG L J. Effect of Double Doping on Oxidation Resistance and Ductility of γTiAlBased Alloys\[D\]. Tianjin: Civil Aviation University of China, 2019. \[58\]BHATTACHARYA S K, SAHARA R, NARUSHIMA T. Oxidation of Metals\[J\], 2020, 94(3): 205-218. \[59\]XU Y, LIANG W, MIAO Q, et al. Heat Treatment of Metals\[J\], 2013, 38(8): 21-25. \[60\]MENGIS L, OSKAY C, DONCHEV A, et al. Surface and Coatings Technology\[J\], 2021, 406: 126646. \[61\]WEI X F. Transactions of Materials and Heat Treatment\[J\], 2013, 34: 139-143. \[62\]SASAKI T, YAGI T, WATANABE T, et al. Surface and Coatings Technology\[J\], 2011, 205(13): 3900-3904. \[63\]XU Y, LIANG W, MIAO Q, et al. Surface Engineering\[J\], 2015, 31(5): 354-360. \[64\]WANG Q, WU W Y, JIANG M Y, et al. Surface and Coatings Technology\[J\], 2020, 381: 125126. \[65\]SWADZBA R, SWADABA L, MENDALA B, et al. Surface and Coatings Technology\[J\], 2020, 403: 126361. \[66\]NOURI S, RASTEGARI S, MIRDAMADI S, et al. Surface Engineering\[J\], 2015, 31(12): 930-933. \[67\]CHEN C, FENG X M, SHEN Y F. Journal of Alloys and Compounds\[J\], 2017, 701: 27-36. \[68\]HUANG J, ZHAO F, CUI X Y, et al. Applied Surface Science\[J\], 2022, 582: 152444. \[69\]ZHOU C, XU H, GONG S, et al. Surface and Coatings Technology\[J\], 2000, 132(2): 117-123. \[70\]CHEN C, ZHANG J P, DUAN C Y, et al. Journal of Alloys and Compounds\[J\], 2016, 660: 208-219. \[71\]CHEN C, FENG X M, SHEN Y F. Journal of Alloys and Compounds\[J\], 2017, 708: 639-651. \[72\]TRIVEDI S P, DAS D K. Intermetallics\[J\], 2005, 13(10): 1122-1133. \[73\]DELMAS M, UCAR M, RESSIER L, et al. Surface and Coatings Technology\[J\], 2004, 188(11): 49-54. \[74\]DELMAS M, POQUILLON D, KIHN Y, et al. Surface and Coatings Technology\[J\], 2005, 200(5): 1413-1417. \[75\]DAI J J, ZHANG F Y, WANG A M, et al. Surface and Coatings Technology\[J\], 2017, 309: 805-813. \[76\]劉洪喜, 趙艷爽, 張曉偉, 等. 光學(xué)精密工程\[J\], 2019, 27(2): 316-325. LIU H X, ZHAO Y S, ZHANG X W, et al. Optics and Precision Engineering\[J\], 2019, 27(2): 316-325. \[77\]HU X, LI F, SHI D, et al. Journal of Alloys and Compounds\[J\], 2020, 830: 154670. \[78\]LI X T, HUANG L J, JIANG S, et al. Journal of Alloys and Compounds\[J\], 2019, 807: 151679. \[79\]閆偉, 孫鳳久, 劉建榮, 等. 東北大學(xué)學(xué)報(bào)(自然科學(xué)版)\[J\], 2010, 31(3): 411-414. YAN W, SUN F J, LIU J R, et al. Journal of Northeastern University (Natural Science)\[J\], 2010, 31(3): 411-414. \[80\]BRADY M P, SMIALEK J L, HUMPHREY D L. MRS Online Proceedings Library\[J\], 2011, 364: 1309. \[81\]DAI J J, LI S Y, ZHANG H X, et al. Surface and Coatings Technology\[J\], 2018, 344: 479-488. \[82\]EBACHSTAHL A, EILERS C, LASKA N, et al. Surface and Coatings Technology\[J\], 2013, 223: 24-31. \[83\]ZAMBRANO C, JENNY C, PEREIRA F, et al. Surface and Coatings Technology\[J\], 2019, 358: 114-124. \[84\]DAI J J, ZHANG H X, SUN C X, et al. Corrosion Science\[J\], 2020, 168: 108578. \[85\]LASKA N, BRAUN R, KNITTEL S. Surface and Coatings Technology\[J\], 2018, 349: 347-356. \[86\]SWADZBA R, BAUER P P. Applied Surface Science\[J\], 2021, 562: 150191. \[87\]周鵬, 張平則, 魏東博, 等. 機(jī)械工程材料\[J\], 2014, 38(2): 63-67. ZHOU P, ZHANG P Z, WEI D B, et al. Materials for Mechanical Engineering\[J\], 2014, 38(2): 63-67. \[88\]TIAN S W, ZHANG Y F, HE A R, et al. Surface and Coatings Technology\[J\], 2022, 444: 128687. \[89\]GONG X, CHEN R R, YANG Y H, et al. Applied Surface Science\[J\], 2018, 431: 81-92. \[90\]DING Z, MIAO Q, LIANG W, et al. Materials Research Express\[J\], 2018, 5(6): 066524. \[91\]GONG X, CHEN R R, WANG Q, et al. Journal of Alloys and Compounds\[J\], 2017, 729: 679-687. \[92\]SHI J, LI H Q, WAN M Q, et al. Corrosion Science\[J\], 2016, 102: 200-208. \[93\]YANG Y F, XIAO Q, REN P, et al. Corrosion Science\[J\], 2021, 187: 109510. \[94\]MOSKALEWICZ T, DUBIEL B, WENDLER B. Materials Characterization\[J\], 2013, 83: 161-169. \[95\]KONG J, ZHOU C, GONG S, et al. Surface and Coatings Technology\[J\], 2003, 165(3): 281-285. \[96\]FU Y, KANG N, LIAO H, et al. Intermetallics\[J\], 2017, 86: 51-58. \[97\]YEH J W, CHEN S K, LIN S J, et al. Advanced Engineering Materials\[J\], 2004, 6(5): 299-303. \[98\]LOU L Y, ZHANG Y, JIA Y J, et al. Surface and Coatings Technology\[J\], 2020, 392: 125697. \[99\]CUI W, LI W, CHEN W T, et al. Crystals\[J\], 2020, 10(8): 638. \[100\]HUANG C, ZHANG Y Z, SHEN J Y, et al. Surface and Coatings Technology\[J\], 2011, 206(6): 1389-1395. \[101\]ZHAO P, LI J, ZHANG Y, et al. Journal of Alloys and Compounds\[J\], 2021, 862: 158405. \[102\]ZENG X, LIU Z Y, WU G G, et al. Surface and Coatings Technology\[J\], 2021, 418: 127243. \[103\]TIAN Y, SHEN Y F, LU C Y, et al. Journal of Alloys and Compounds\[J\], 2019, 779: 456-465. \[104\]LI S, YAMAGUCHI T. Surface and Coatings Technology\[J\], 2022, 433: 128123. \[105\]SAMLOR D, BAGGETTO L, LALOO R, et al. Journal of Materials Science\[J\], 2020, 55(11): 4883-4895. \[106\]TANG Z, WANG F, WU W. Materials Science and Engineering: A\[J\], 2000, 276(1): 70-75. \[107\]JIANG Z P, YANG X, LIANG Y F, et al. Surface and Coatings Technology\[J\], 2018, 333: 187-194. \[108\]WANG P, HE Y D, ZHANG J. Materials Chemistry and Physics\[J\], 2016, 184: 1-4. \[109\]WANG P, DENG S J, HE Y D, et al. Ceramics International\[J\], 2016, 42(7): 8229-8233. \[110\]MA X X, HE Y D, WANG D R. Applied Surface Science\[J\], 2011, 257(23): 10273-10281. \[111\]YANG X, JIANG Z P, HAO G J, et al. Applied Surface Science\[J\], 2018, 455: 144-152. \[112\]ZHANG X J, GAO Y H, REN B Y, et al. Journal of Materials Science\[J\], 2010, 45(6): 1622-1628. \[113\]ZHU Y C, ZHANG Y, LI X Y, et al. Materials Transactions JIM\[J\], 2000, 41(9): 1118-1120. \[114\]WU L K, WU W Y, SONG J L, et al. Corrosion Science\[J\], 2018, 140: 388-401. \[115\]YAN H J, TAI Z F, WU L K, et al. Corrosion Communications\[J\], 2021, 3: 34-44. \[116\]XU S H, LU T T, SHEN K J, et al. Materials Chemistry and Physics\[J\], 2022, 275: 125306. \[117\]WU L K, WU J J, WU W Y, et al. Corrosion Science\[J\], 2019, 146: 18-27. \[118\]程玉賢, 王文, 朱圣龍, 等. 腐蝕科學(xué)與防護(hù)技術(shù)\[J\], 2009, 21(3): 266-268. CHENG Y X, WANG W, ZHU S L, et al. Corrosion Science and Protection Technology\[J\], 2009, 21(3): 266-268. \[119\]LI W, ZHU S, WANG C, et al. Corrosion Science\[J\], 2013, 74: 367-378. \[120\]XIAO Z, TAN F, WANG W, et al. Ceramics International\[J\], 2015, 41(1): 325-331. \[121\]WU J J, YAN H J, CAO F H, et al. Surface and Coatings Technology\[J\], 2021, 422: 127495. \[122\]WANG X, ZHU S, GU Z, et al. Journal of the European Ceramic Society\[J\], 2017, 37(3): 1013-1022. \[123\]SHEN M L, ZHU S L, CHEN M H, et al. Journal of the American Ceramic Society\[J\], 2011, 94(8): 2436-2441. \[124\]YU F, GU D, ZHENG Y, et al. Journal of Alloys and Compounds\[J\], 2017, 729: 453-462. \[125\]LIAO Y M, CHEN M H, FENG M, et al. Corrosion Science\[J\], 2021, 191: 109747. \[126\]LIAO Y M, ZHANG B, CHEN M H, et al. Corrosion Science\[J\], 2020, 167: 108526. \[127\]KRSTIC V V, NICHOLSON P S, HOAGLAND R G. Journal of the American Ceramic Society\[J\], 1981, 64(9): 499-504. \[128\]ALHAFIAN M R, CHEMIN J B, VALLE N, et al. Corrosion Science\[J\], 2022, 201: 110226. \[129\]MOSER M, MARHOFER P H, CLEMENS H. Intermetallics\[J\], 2008, 16(10): 1206-1211. \[130\]ZHANG M M, CHENG Y X, XIN L, et al. Corrosion Science\[J\], 2020, 166: 108476. \[131\]SHUGUROV A, PANIN A, KASTEROV A. Surface and Coatings Technology\[J\], 2021, 421: 127488. \[132\]ZHANG K, XIN L, LU Y, et al. Corrosion Science\[J\], 2021, 179: 109151. \[133\]ZHANG K, XIN L, MA T Y, et al. Corrosion Science\[J\], 2022, 204: 110394. \[134\]CHANG Y Y, YANG S M. Thin Solid Films\[J\], 2010, 518(21): S34-S37. \[135\]OSTROVSKAYA O, BADINI C, DEAMBROSIS S M, et al. Materials & Design\[J\], 2021, 208: 109905. \[136\]HOVSEPIAN P E, EHIASARIAN A P, BRAUN R, et al. Surface and Coatings Technology\[J\], 2010, 204(16): 2702-2708. \[137\]XU Y, SHI P P, QIU J, et al. Vacuum\[J\], 2019, 165: 148-156. \[138\]YAO T H, LIU Y, LIU B, et al. Surface and Coatings Technology\[J\], 2015, 277: 210-215. \[139\]NARITA T, IZUMI T, YATAGAI M, et al. Intermetallics\[J\], 2000, 8(4): 371-379. \[140\]TAKESHI I, TAKAYUKI Y, SHIGENARI H, et al. Intermetallics\[J\], 2005, 13(7): 694-703. \[141\]GURRAPPA I, MANOVA D, GERLACH J W, et al. Journal of Alloys and Compounds\[J\], 2006, 426(1): 375-383. \[142\]SCHTZE M, SCHUMACHER G, DETTENWANGER F, et al. Corrosion Science\[J\], 2002, 44(2): 303-318. \[143\]趙宇光, 周偉, 秦慶東,等.特種鑄造及有色合金\[J\], 2004(3): 34-36+74-75. ZHAO Y G, ZHOU W, QIN Q D, et al. Special Casting & Nonferrous Alloys\[J\], 2004(3): 34-36+74-75. \[144\]SWADZ′BA R, LASKA N, BAUER P P, et al. Corrosion Science\[J\], 2020, 177: 108985. \[145\]KAWAURA H, KAWAHARA H, NISHINO K, et al. Materials Science and Engineering: A\[J\], 2002, 329-331: 589-595. \[146\]HUANG Y, PENG X, DONG Z, et al. Corrosion Science\[J\], 2018, 143: 76-83. \[147\]RAKOWSKI J M, MEIER G H, PETTIT F S, et al. Scripta Materialia\[J\], 1996, 35(12): 1417-1422. \[148\]WU L K, BAO Y T, JIANG M Y, et al. Corrosion Science\[J\], 2022, 207: 110571. \[149\]CAO J D. Applied Surface Science\[J\], 2019, 493: 729-739. \[150\]WU L J, LUO K Y, LIU Y, et al. Applied Surface Science\[J\], 2018, 431: 122-134. \[151\]HE D S, LI L H, GUO W, et al. Corrosion Science\[J\], 2021, 184: 109364. \[152\]KANJER A, LAVISSE L, OPTASANU V, et al. Surface and Coatings Technology\[J\], 2017, 326: 146-155. \[153\]YANG H, HUANG X, GUO J S, et al. Journal of Alloys and Compounds\[J\], 2022, 911: 164708.

備注/Memo

備注/Memo:
收稿日期:2022-04-06修回日期:2022-11-27 基金項(xiàng)目:國家自然科學(xué)基金項(xiàng)目(51701157,52071274);陜西省自然科學(xué)基礎(chǔ)研究計(jì)劃項(xiàng)目(2022JM-261);陜西省創(chuàng)新人才推動(dòng)計(jì)劃青年科技新星項(xiàng)目(2020KJXX-062);西安石油大學(xué)研究生創(chuàng)新項(xiàng)目(YCS21111018);陜西省 大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練項(xiàng)目(S202110705065) 第一作者:劉艷明,女,1988年生,副教授,碩士生導(dǎo)師 通訊作者:汪欣,男,1987年生,教授級(jí)高級(jí)工程師, 碩士生導(dǎo)師,Email:wangx@alum.imr.ac.cn
更新日期/Last Update: 2023-08-28
免费的av网站_手机免费观看av_男人操女人下面视频_无码人妻一区二区三区一_亚洲一区二区三区四区av_色婷婷在线视频观看_第四色在线视频_国产成人精品无码片区在线_国产一级二级在线观看_日本免费网站视频
26uuu亚洲| 亚洲bt欧美bt精品777| 黄网站免费久久| 久久久久久婷婷| 在线观看日韩一区| 亚洲丝袜美腿综合| 成人在线视频一区| 国产精品国产三级国产传播| 久久久久国产精品人| 久久99久久久久| 91成人在线免费视频| 26uuu国产日韩综合| 精品一二线国产| www.黄色在线| 国产日韩欧美a| 国产精品白丝jk白祙喷水网站| 日本少妇xxxxx| 久久网站最新地址| 国产麻豆视频精品| 免费成人深夜蜜桃视频| 中文在线免费一区三区高中清不卡| 国产裸体歌舞团一区二区| 国产一区在线观看免费| 亚洲国产精华液网站w | 一区二区成人免费视频| 国产精品久久久久精k8| 99久久久国产精品| 欧美性色黄大片手机版| 亚洲成av人片www| 国产精品第七页| 亚洲精品一区二区三区在线观看| 免费亚洲电影在线| 国产精品国产三级国产专业不 | 黑人性生活视频| 欧美人xxxx| 蜜桃av一区二区三区| 色屁屁草草影院ccyy.com| 国产欧美日产一区| 波多野结衣一区二区三区| 欧美午夜电影一区| 日韩av一区二区在线影视| 中文字幕免费在线看线人动作大片| 久久精品一区八戒影视| caoporn国产精品| 欧美日本一区二区三区| 麻豆国产欧美日韩综合精品二区| 国产精品18在线| 亚洲精品大片www| 亚洲综合自拍网| 国产三级欧美三级| 91亚洲精品久久久蜜桃| 欧美一级爆毛片| 国产福利一区二区| 欧美午夜精品理论片a级按摩| 首页国产丝袜综合| 992在线观看| 一区二区三区国产豹纹内裤在线| 中文字幕av观看| 中文久久乱码一区二区| 一级全黄裸体片| 久久久久国产精品麻豆| 91丨国产丨九色丨pron| 日韩精品一区二区三区在线观看| 国产精品888| 欧美另类久久久品| 国产精品一区在线| 欧美色图第一页| 韩国午夜理伦三级不卡影院| 在线影院国内精品| 老司机免费视频一区二区三区| 午夜精品福利在线视频| 日韩成人免费在线| 亚洲成人生活片| 免费高清在线视频一区·| 日本妇女毛茸茸| 蜜臀久久99精品久久久画质超高清| 乱h高h女3p含苞待放| 日本欧美韩国一区三区| 在线观看xxx| 另类成人小视频在线| 欧美三级三级三级| 韩国v欧美v日本v亚洲v| 欧美另类高清zo欧美| 懂色av一区二区在线播放| 日韩视频一区二区三区| 99久久精品99国产精品| 久久亚洲春色中文字幕久久久| 蜜桃视频无码区在线观看| 欧美激情综合五月色丁香小说| 午夜剧场免费看| 综合激情成人伊人| 变态另类ts人妖一区二区| 亚洲第四色夜色| 色综合婷婷久久| 国产在线看一区| 91精品在线观看入口| 99久久精品国产导航| 久久精品在线免费观看| 白嫩情侣偷拍呻吟刺激| 亚洲三级在线播放| 五月婷婷欧美激情| 日韩激情在线观看| 欧美日韩综合不卡| 大陆成人av片| 国产视频911| 日本性高潮视频| 亚洲成人自拍网| 欧美午夜精品久久久| av成人老司机| 国产精品毛片高清在线完整版| 人人人妻人人澡人人爽欧美一区| 亚洲va国产天堂va久久en| 色婷婷亚洲精品| 成人免费视频caoporn| 久久精品一区二区三区不卡牛牛| theav精尽人亡av| 婷婷丁香激情综合| 欧美精品久久久久久久多人混战| 99久久精品国产一区二区三区 | 国产麻豆精品theporn| 2欧美一区二区三区在线观看视频| 亚洲熟妇一区二区| 亚洲精品欧美激情| 色狠狠一区二区| 成人动漫一区二区在线| 亚洲国产精品成人久久综合一区| 日韩影视一区二区三区| 极品少妇xxxx偷拍精品少妇| 精品国产网站在线观看| 朝桐光av一区二区三区| 香蕉影视欧美成人| 91精品欧美综合在线观看最新| 91精产国品一二三| 亚洲成人先锋电影| 欧美一区二区三区喷汁尤物| 亚洲黄色免费在线观看| 日本在线不卡视频| 精品精品国产高清a毛片牛牛| 我和岳m愉情xxxⅹ视频| 日本麻豆一区二区三区视频| 日韩欧美亚洲国产另类 | 91 com成人网| 欧美无人区码suv| 麻豆国产精品官网| 久久久蜜臀国产一区二区| 亚洲欧美综合7777色婷婷| 高清在线观看日韩| 亚洲男人的天堂在线aⅴ视频| 日本高清无吗v一区| 美女被爆操网站| 日韩精品乱码av一区二区| 日韩亚洲电影在线| 老司机福利av| 国产麻豆日韩欧美久久| 亚洲欧洲国产日韩| 欧美日韩一区在线| 国产精品无码永久免费不卡| 日韩av电影免费观看高清完整版 | 日韩欧美一级特黄在线播放| 免费在线观看你懂的| 国产麻豆欧美日韩一区| 《视频一区视频二区| 欧美日韩五月天| 日本黄色网址大全| 国产成人午夜视频| 伊人色综合久久天天| 91麻豆精品国产91久久久久久久久| 四虎成人免费视频| 奇米影视在线99精品| 国产欧美一区二区精品忘忧草| 91在线播放观看| 在线免费看黄色片| 国产一区二区三区精品欧美日韩一区二区三区| 欧美激情一区二区三区全黄| 91极品美女在线| 亚洲蜜桃精久久久久久久久久久久| 国产最新精品免费| 亚洲麻豆国产自偷在线| 欧美一卡二卡三卡| 成人免费视频入口| 99国内精品久久| 日本在线不卡视频一二三区| 日本一区二区电影| 欧洲日韩一区二区三区| 黄色工厂在线观看| 国产成人鲁色资源国产91色综| 亚洲精品五月天| 亚洲精品在线电影| 色婷婷激情综合| a毛片毛片av永久免费| 高清国产一区二区| 亚洲h精品动漫在线观看| 亚洲国产高清在线观看视频| 在线亚洲精品福利网址导航| 久久亚洲AV成人无码国产野外| 国产激情精品久久久第一区二区 | 国产成人久久精品77777最新版本| 亚洲成a人片综合在线| 欧美国产国产综合| 欧美一区二区在线免费播放|