[1]童永仲,潘紹武,朱美芳.氫鍵/二硫鍵協(xié)同的室溫修復(fù)聚氨酯的制備及性能研究[J].中國材料進(jìn)展,2024,43(07):658-665.[doi:10.7502/j.issn.1674-3962.202303011]
TONG Yongzhong,PAN Shaowu,ZHU Meifang.Preparation of Room-Temperature Healable Polyurethanes Based on Synergistic Hydrogen Bonds/Disulfide Bonds and Study on Their Properties[J].MATERIALS CHINA,2024,43(07):658-665.[doi:10.7502/j.issn.1674-3962.202303011]
點(diǎn)擊復(fù)制
氫鍵/二硫鍵協(xié)同的室溫修復(fù)聚氨酯的制備及性能研究(
)
中國材料進(jìn)展[ISSN:1674-3962/CN:61-1473/TG]
- 卷:
-
43
- 期數(shù):
-
2024年第07期
- 頁碼:
-
658-665
- 欄目:
-
- 出版日期:
-
2024-07-30
文章信息/Info
- Title:
-
Preparation of Room-Temperature Healable Polyurethanes Based on Synergistic Hydrogen Bonds/Disulfide Bonds and Study on Their Properties
- 文章編號:
-
1674-3962(2024)07-0658-08
- 作者:
-
童永仲; 潘紹武; 朱美芳
-
東華大學(xué)材料科學(xué)與工程學(xué)院 纖維材料改性國家重點(diǎn)實(shí)驗(yàn)室,上海 201620
- Author(s):
-
TONG Yongzhong; PAN Shaowu; ZHU Meifang
-
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,College of Material Science and Engineering,Donghua University,Shanghai 201620,China
-
- 關(guān)鍵詞:
-
室溫自修復(fù); 聚氨酯; 硬段; 力學(xué)性能; 氫鍵; 二硫鍵
- Keywords:
-
room-temperature self-healing; polyure-thanes; hard segments; mechanical properties; hydrogen bonds; disulfide bonds
- 分類號:
-
TQ317
- DOI:
-
10.7502/j.issn.1674-3962.202303011
- 文獻(xiàn)標(biāo)志碼:
-
A
- 摘要:
-
自修復(fù)材料作為一類新興的智能材料,具有廣泛的應(yīng)用前景,然而此類材料難以兼具良好的力學(xué)性能與自修復(fù)能力。以聚四氫呋喃(PTMEG)為軟段、異佛爾酮二異氰酸酯(IPDI)和雙(4-羥苯基)二硫醚(4-HD)為擴(kuò)鏈劑共同構(gòu)成硬段,通過兩步擴(kuò)鏈反應(yīng)制備了室溫自修復(fù)聚氨酯(PUHD),并分別研究了單體配比與擴(kuò)鏈劑的分子結(jié)構(gòu)對PUHD的力學(xué)與自修復(fù)性能的影響。結(jié)果表明:當(dāng)R值(R=\[IPDI\]/\[PTMEG\])為1.5時(shí),PUHD的綜合性能最佳,拉伸強(qiáng)度、斷裂伸長率與韌性分別為7.53 MPa、1447.80%與31.98 MJ/m3。PUHD-1.5具有良好的流變性能,在25與60 ℃下的特征弛豫時(shí)間分別為23.45與7.10 min,在25 ℃下修復(fù)6 h,斷裂伸長率與拉伸強(qiáng)度的修復(fù)效率分別為95.29%和89.95%。擴(kuò)鏈劑的分子結(jié)構(gòu)對PUHD的自修復(fù)性能有顯著影響,弱氫鍵作用與松散堆積的硬段有利于提高PUHD的自修復(fù)性能。
- Abstract:
-
As a new kind of intelligent material,self-healing materials have a widespread application prospect.However,it is difficult to have both good mechanical properties and selfhealing ability.Here,using polytetrahydrofuran(PTMEG)as soft segments,isophorone diisocyanate(IPDI)and bis(4-hydroxyphenyl)disulfide(4-HD)as chain extenders constructing hard segments together,a room-temperature selfhealing polyurethane(PUHD)was prepared by two-step chain extension reaction.The effects of monomer ratio and molecular structures of chain extenders on the mechanical and selfhealing properties of PUHD were studied.The results showed that PUHD had the best comprehensive performance when the R value(R=\[IPDI\]/\[PTMEG\])is 1.5.The tensile strength,elongation at break and toughness reached 7.53 MPa,1447.80% and 31.98 MJ/m3,respectively.PUHD-1.5 had good rheological properties with characteristic relaxation time of 23.45 and 7.10 min at 25 and 60 ℃,respectively.The self-healing efficiency of elongation at break and tensile strength were 95.29% and 89.95% at 25 ℃ for 6 h,respectively.The molecular structures of chain extenders have a significant effect on the self-healing ability of PUHD.Weak interaction of hydrogen bonds and loosely-packed hard segments are beneficial to improve the self-healing properties of PUHD.
參考文獻(xiàn)/References:
\[1\]XU Z,CHEN L,LU L,et al.Advanced Functional Materials\[J\],2021,31(1):2006432.
\[2\]KRISADA A A,DANIEL C.Chemical Engineering Journal\[J\],2023,452:139055.
\[3\]ZHOU S,DENG K,XU Z,et al.Chemical Engineering Journal\[J\],2022,442:136083.
\[4\]WANG J,LAI J,JIA X,et al.Journal of Materials Chemistry C\[J\],2022,10(30):10895-10901.
\[5\]XU W,WONG M C,GUO Q,et al.Journal of Materials Chemistry A\[J\],2019,7(27):16267-16276.
\[6\]LI F,XU Z,HU H,et al.Chemical Engineering Journal\[J\],2021,410:128363.
\[7\]KHATIB M,ZOHAR O,SALIBA W,et al.Advanced Functional Materials\[J\],2020,30(22):1910196.
\[8\]GUO Y,YANG L,ZHANG L,et al.Advanced Functional Materials\[J\],2021,31(50):2106281.
\[9\]LI Z,ZHU Y L,NIU W,et al.Advanced Materials\[J\],2021,33(27):2101498.
\[10\]WANG D,XU J,CHEN J,et al.Advanced Functional Materials\[J\],2020,30(3):1907109.
\[11\]LI J,NIU H,YU Y,et al.ACS Applied Polymer Materials\[J\],2021,3(7):3373-3382.
\[12\]SONG Y,LIU Y,QI T,et al.Angewandte Chemie International Edition\[J\],2018,57(42):13838-13842.
\[13\]張幼維,朱文凡,李闖,等. 中國材料進(jìn)展\[J\],2023,42(7):566-574.
ZHANG Y W, ZHU W F, LI C,et al.Materials China\[J\],2023,42(7):566-574.
\[14\]YANG Z,SUN D.Journal of Applied Polymer Science\[J\],2020,137(45):49413.
\[15\]ZHANG J,ZHANG C,SONG F,et al.Chemical Engineering Journal\[J\],2022,429:131848.
\[16\]GUO H,HAN Y,ZHAO W,et al.Nature Communications\[J\],2020,11(1):2037.
\[17\]KANG J,SON D,WANG GJ N,et al.Advanced Materials\[J\],2018,30(13):1706846.
\[18\]ZHANG L,LIU Z,WU X,et al.Advanced Materials\[J\],2019,31(23):2006432.
\[19\]CAO P F,LI B,HONG T,et al.Advanced Functional Materials\[J\],2018,28(22):1800741.
\[20\]YE G,QIU J,F(xiàn)ANG X,et al.Materials Horizons\[J\],2021,8(3):1047-1057.
\[21\]CHENG Y,CHAN K H,WANG X Q,et al.Advanced Functional Materials\[J\],2021,31(32):2101825.
\[22\]RONG J,ZHONG J,YAN W,et al.Polymer\[J\],2021,221:123625.
\[23\]QU Q,WANG H,HE J,et al.Soft Matter\[J\],2020,16(39):9128-9139.
\[24\]HU J,MO R,SHENG X,et al.Polymer Chemistry\[J\],2020,11(14):2585-2594.
\[25\]XIE J,F(xiàn)AN L,YAO D,et al.Materials Today Chemistry\[J\],2022,23(14):100708.
\[26\]LI Y,LI W,SUN A,et al.Materials Horizons\[J\],2021,8(1):267-275.
\[27\]PENG Y J,HE X,WU Q,et al.Polymer\[J\],2018,149:154-163.
備注/Memo
- 備注/Memo:
-
收稿日期:2023-03-20修回日期:2023-05-03
基金項(xiàng)目:國家自然科學(xué)基金資助項(xiàng)目(52103252,52090033)
第一作者:童永仲,男,1996年生,碩士研究生
通訊作者:潘紹武,男,1987年生,研究員,博士生導(dǎo)師,
Email:pansw@dhu.edu.cn
更新日期/Last Update:
2024-06-26