[1]韓曉輝,劉橋,張繁星,等.硬質相類型對冷噴涂鋁基涂層組織與耐磨性的影響[J].中國材料進展,2024,43(02):089-95.[doi:10.7502/j.issn.1674-3962.202306004]
HAN Xiaohui,LIU Qiao,ZHANG Fanxing,et al.Effect of Type of the Hard Particle on Microstructure and Wear Performance Properties[J].MATERIALS CHINA,2024,43(02):089-95.[doi:10.7502/j.issn.1674-3962.202306004]
點擊復制
硬質相類型對冷噴涂鋁基涂層組織與耐磨性的影響(
)
中國材料進展[ISSN:1674-3962/CN:61-1473/TG]
- 卷:
-
43
- 期數:
-
2024年第02期
- 頁碼:
-
089-95
- 欄目:
-
- 出版日期:
-
2024-02-28
文章信息/Info
- Title:
-
Effect of Type of the Hard Particle on Microstructure and Wear Performance Properties
- 文章編號:
-
1674-3962(2024)02-0089-07
- 作者:
-
韓曉輝; 劉橋; 張繁星; 雒曉濤
-
1. 中車青島四方機車車輛股份有限公司,山東 青島 266111
2. 西安交通大學材料科學與工程學院 金屬材料強度國家重點實驗室,陜西 西安 710049
3. 洛陽船舶材料研究所,河南 洛陽 471023
- Author(s):
-
HAN Xiaohui; LIU Qiao; ZHANG Fanxing; LUO Xiaotao
-
1. CRRC Qingdao Sifang Rolling Stock Co., Ltd., Qingdao 266111, China
2. State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
3. Luoyang Ship Material Research Institute, Luoyang 471023, China
-
- 關鍵詞:
-
冷噴涂; 高強鋁合金; 硬質相類型; 顯微組織; 耐磨性
- Keywords:
-
cold spray; high strength Al alloy; type of the hard particle; microstructure; wear resistance
- 分類號:
-
TG174
- DOI:
-
10.7502/j.issn.1674-3962.202306004
- 文獻標志碼:
-
A
- 摘要:
-
冷噴涂低溫固態的材料沉積特性使該方法在熱敏感材料高強鋁合金的再制造修復方面具有天然優勢,然而冷噴涂7系高強鋁合金存在結合強度低、硬度和耐磨性能低于同成分基材的難題。對此,主要研究了不同特性硬質顆粒在噴涂粉末中的添加對冷噴涂7050Al合金修復層顯微組織、結合強度與摩擦磨損性能的影響規律。以體積分數為30%的脆性Al2O3陶瓷顆粒和韌性的WC-17Co金屬陶瓷顆粒為硬質相,在相同參數條件下分別沉積了純7050Al涂層、7050Al/Al2O3復合涂層與7050Al/WC-17Co復合涂層。采用SEM表征了涂層的橫截面組織;依照ASTM C633標準測試了不同硬質相添加對涂層結合強度的影響規律;采用球盤摩擦磨損試驗研究了涂層的摩擦磨損行為。結果表明,沉積過程中,脆性的Al2O3顆粒由于不能協調變形,因此與7050Al結合較差且自身會發生碰撞破碎現象;韌性的WC-17Co硬質合金顆粒可以協調變形,因此與7050Al結合較好,且在涂層中含量較Al2O3更高。WC-17Co顆粒在涂層與基材界面處形成的榫卯結構可將7050Al涂層的結合強度由34.5提升到73.2 MPa以上,而Al2O3顆粒的添加對涂層結合強度的影響可以忽略。與7050Al基材相比,WC-17Co硬質合金顆粒的添加可使涂層耐摩擦磨損性能提高8倍以上,而Al2O3顆粒容易剝落的特點使得涂層耐磨性降低50%以上。
- Abstract:
-
The low-temperature material deposition characteristic makes cold spray a potential advanced approach to repair and remanufacture high-strength aluminum alloys of high heat susceptibility. However, the cold sprayed 7xxx high-strength Al alloys usually show low bonding strength, lower hardness and wear resistance as compared to the bulk substrate with same composition. In this work, two hard particles were added to the spray powder to study its effects on microstructure, bonding strength, and friction wear performance of the cold-sprayed 7050Al alloy. Brittle Al2O3 and tough WC-17Co metal ceramic particles with a volume fraction of 30% were added into the 7050Al powder under the same parameter conditions to deposit 7050Al/Al2O3 and 7050Al/WC-17Co composite coatings. The cross-sectional microstructure of the coatings was characterized by SEM. The effect of hard particle additions on the bonding strength of the coating was tested according to ASTM C633 Standard. The friction wear behavior of the coating was studied using ball disc friction-wear tests. The results show that during the deposition, brittle Al2O3 particles could not be deformed, resulting in poor bonding to 7050Al and fracture. However, tough WC-17Co hard alloy particles can be deformed and result in better bonding to 7050Al. The tenon-mortise structure formed by WC-17Co particles at the coating/substrate interface can significantly increase the bonding strength of the 7050Al coating from 34.5 to above 73.2 MPa, while Al2O3 particles have little effect on the bonding strength. Compared with 7050Al substrate, the addition of WC-17Co ceramic particles can improve the wear resistance by more than 8 times, while brittle Al2O3 particles leads to more than 50% reduction in wear resistance.
參考文獻/References:
[1] 王國軍,王祝堂.輕合金加工技術[J] ,2017,45(11).
Wang G J,Wang Z T.Light Alloy Fabrication Technology[J],2017,45(11).
[2] KAUFMANN N,IMRAN M,WISCHEROPP T M,et al.Physics Procedia[J] ,2016,83:918-926.
[3] 祁澤武,蔡鑫袆,何智,等.焊接技術[J].2022,51(02):5-9.
Qi Z W,Cai X H,He Z,et al.Welding Technology[J].2022,51(02):5-9.
[4] 郭永利,梁工英,李路.中國激光[J],2008,35(2):303-306.
Guo Y L,Liang G Y,Li L.Chinese Journal of Lasers[J],2008,35(2):303-306.
[5] MARTIN J H,YAHATA B D,HUNDLEY J M,et al.
Nature[J] ,2017,549(7672):365-369.
[6] WANG J,TIMOKHINA I,SHARP K,et al.Surface and Coatings Technology,2022,445:128726
[7] WIDENER C A,CARTER M J,OZDEMIR O C,et al.Journal of Thermal Spray Technology[J] ,2016,25:193-201.
[8] YIN S,CAVALIERE P,ALDWELL B,et al. Additive Manufacturing[J] ,2018,21: 628-650.
[9] CAVALIERE P,SILVELLO A,Journal of Thermal Spray Technology[J] ,2017,26:661-670.
[10] ROKNI M R,WIDENER C A,CRAWFORD G A,et al. Surface and Coatings Technology[J] ,2015,276:305-315.
[11] ROKNI M R,WIDENER C A,CRAWFORD G A,et al. Materials Science and Engineering:A[J] ,2015,625:19-27.
[12] SABARD A,HUSSAIN T,et al.Journal of Thermal Spray Technology[J] ,2018,27:145-158.
[13] SABARD A,MCNUTT P,BEGG H,et al.Surface and Coatings Technology,2020,385:125367.
[14] ROKNI M R,WIDENER C A,CHEMPAGNE V K,Surface and Coatings Technology[J] ,2014,251:254-263.
[15] BI J K,ZCK LOKE,CKR LIM,et al.Aerospace[J] ,2022,9(2):65.
[16] XIANG Q,NAEEM UL HAQ TARIQ,WANG J Q,et al.Surface and Coatings Technology[J] ,2018,350:391-400.
[17] ONUR M,BERTRAND J,SABRI K.Surface and Coatings Technology[J] ,2013,235:108-116.
[18] WEI Y K,LUO X T,LI C J,Journal of Thermal Spray Technology[J] ,2017,26(1-2):173-183.
[19] Dosta S,GIOVANNI B,ALESSIA C,et al.Acta Materialia[J] ,2017,124:173-181.
備注/Memo
- 備注/Memo:
-
收稿日期:2023-06-05修回日期:2023-07-04
基金項目:國家自然科學基金資助項目(90816024);科技部“973”計劃項目(2006CB601206)
第一作者:韓曉輝,男,1977年生,教授級高工
通訊作者:雒曉濤,男,1986年生,教授,博士生導師
Email:luoxiaotao@xjtu.edu.cn
更新日期/Last Update:
2024-01-29