[1]韓曉輝,劉橋,張繁星,等.硬質(zhì)相類型對(duì)冷噴涂鋁基涂層組織與耐磨性的影響[J].中國材料進(jìn)展,2024,43(02):089-95.[doi:10.7502/j.issn.1674-3962.202306004]
HAN Xiaohui,LIU Qiao,ZHANG Fanxing,et al.Effect of Type of the Hard Particle on Microstructure and Wear Performance Properties[J].MATERIALS CHINA,2024,43(02):089-95.[doi:10.7502/j.issn.1674-3962.202306004]
點(diǎn)擊復(fù)制
硬質(zhì)相類型對(duì)冷噴涂鋁基涂層組織與耐磨性的影響(
)
中國材料進(jìn)展[ISSN:1674-3962/CN:61-1473/TG]
- 卷:
-
43
- 期數(shù):
-
2024年第02期
- 頁碼:
-
089-95
- 欄目:
-
- 出版日期:
-
2024-02-28
文章信息/Info
- Title:
-
Effect of Type of the Hard Particle on Microstructure and Wear Performance Properties
- 文章編號(hào):
-
1674-3962(2024)02-0089-07
- 作者:
-
韓曉輝; 劉橋; 張繁星; 雒曉濤
-
1. 中車青島四方機(jī)車車輛股份有限公司,山東 青島 266111
2. 西安交通大學(xué)材料科學(xué)與工程學(xué)院 金屬材料強(qiáng)度國家重點(diǎn)實(shí)驗(yàn)室,陜西 西安 710049
3. 洛陽船舶材料研究所,河南 洛陽 471023
- Author(s):
-
HAN Xiaohui; LIU Qiao; ZHANG Fanxing; LUO Xiaotao
-
1. CRRC Qingdao Sifang Rolling Stock Co., Ltd., Qingdao 266111, China
2. State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
3. Luoyang Ship Material Research Institute, Luoyang 471023, China
-
- 關(guān)鍵詞:
-
冷噴涂; 高強(qiáng)鋁合金; 硬質(zhì)相類型; 顯微組織; 耐磨性
- Keywords:
-
cold spray; high strength Al alloy; type of the hard particle; microstructure; wear resistance
- 分類號(hào):
-
TG174
- DOI:
-
10.7502/j.issn.1674-3962.202306004
- 文獻(xiàn)標(biāo)志碼:
-
A
- 摘要:
-
冷噴涂低溫固態(tài)的材料沉積特性使該方法在熱敏感材料高強(qiáng)鋁合金的再制造修復(fù)方面具有天然優(yōu)勢(shì),然而冷噴涂7系高強(qiáng)鋁合金存在結(jié)合強(qiáng)度低、硬度和耐磨性能低于同成分基材的難題。對(duì)此,主要研究了不同特性硬質(zhì)顆粒在噴涂粉末中的添加對(duì)冷噴涂7050Al合金修復(fù)層顯微組織、結(jié)合強(qiáng)度與摩擦磨損性能的影響規(guī)律。以體積分?jǐn)?shù)為30%的脆性Al2O3陶瓷顆粒和韌性的WC-17Co金屬陶瓷顆粒為硬質(zhì)相,在相同參數(shù)條件下分別沉積了純7050Al涂層、7050Al/Al2O3復(fù)合涂層與7050Al/WC-17Co復(fù)合涂層。采用SEM表征了涂層的橫截面組織;依照ASTM C633標(biāo)準(zhǔn)測(cè)試了不同硬質(zhì)相添加對(duì)涂層結(jié)合強(qiáng)度的影響規(guī)律;采用球盤摩擦磨損試驗(yàn)研究了涂層的摩擦磨損行為。結(jié)果表明,沉積過程中,脆性的Al2O3顆粒由于不能協(xié)調(diào)變形,因此與7050Al結(jié)合較差且自身會(huì)發(fā)生碰撞破碎現(xiàn)象;韌性的WC-17Co硬質(zhì)合金顆粒可以協(xié)調(diào)變形,因此與7050Al結(jié)合較好,且在涂層中含量較Al2O3更高。WC-17Co顆粒在涂層與基材界面處形成的榫卯結(jié)構(gòu)可將7050Al涂層的結(jié)合強(qiáng)度由34.5提升到73.2 MPa以上,而Al2O3顆粒的添加對(duì)涂層結(jié)合強(qiáng)度的影響可以忽略。與7050Al基材相比,WC-17Co硬質(zhì)合金顆粒的添加可使涂層耐摩擦磨損性能提高8倍以上,而Al2O3顆粒容易剝落的特點(diǎn)使得涂層耐磨性降低50%以上。
- Abstract:
-
The low-temperature material deposition characteristic makes cold spray a potential advanced approach to repair and remanufacture high-strength aluminum alloys of high heat susceptibility. However, the cold sprayed 7xxx high-strength Al alloys usually show low bonding strength, lower hardness and wear resistance as compared to the bulk substrate with same composition. In this work, two hard particles were added to the spray powder to study its effects on microstructure, bonding strength, and friction wear performance of the cold-sprayed 7050Al alloy. Brittle Al2O3 and tough WC-17Co metal ceramic particles with a volume fraction of 30% were added into the 7050Al powder under the same parameter conditions to deposit 7050Al/Al2O3 and 7050Al/WC-17Co composite coatings. The cross-sectional microstructure of the coatings was characterized by SEM. The effect of hard particle additions on the bonding strength of the coating was tested according to ASTM C633 Standard. The friction wear behavior of the coating was studied using ball disc friction-wear tests. The results show that during the deposition, brittle Al2O3 particles could not be deformed, resulting in poor bonding to 7050Al and fracture. However, tough WC-17Co hard alloy particles can be deformed and result in better bonding to 7050Al. The tenon-mortise structure formed by WC-17Co particles at the coating/substrate interface can significantly increase the bonding strength of the 7050Al coating from 34.5 to above 73.2 MPa, while Al2O3 particles have little effect on the bonding strength. Compared with 7050Al substrate, the addition of WC-17Co ceramic particles can improve the wear resistance by more than 8 times, while brittle Al2O3 particles leads to more than 50% reduction in wear resistance.
參考文獻(xiàn)/References:
[1] 王國軍,王祝堂.輕合金加工技術(shù)[J] ,2017,45(11).
Wang G J,Wang Z T.Light Alloy Fabrication Technology[J],2017,45(11).
[2] KAUFMANN N,IMRAN M,WISCHEROPP T M,et al.Physics Procedia[J] ,2016,83:918-926.
[3] 祁澤武,蔡鑫袆,何智,等.焊接技術(shù)[J].2022,51(02):5-9.
Qi Z W,Cai X H,He Z,et al.Welding Technology[J].2022,51(02):5-9.
[4] 郭永利,梁工英,李路.中國激光[J],2008,35(2):303-306.
Guo Y L,Liang G Y,Li L.Chinese Journal of Lasers[J],2008,35(2):303-306.
[5] MARTIN J H,YAHATA B D,HUNDLEY J M,et al.
Nature[J] ,2017,549(7672):365-369.
[6] WANG J,TIMOKHINA I,SHARP K,et al.Surface and Coatings Technology,2022,445:128726
[7] WIDENER C A,CARTER M J,OZDEMIR O C,et al.Journal of Thermal Spray Technology[J] ,2016,25:193-201.
[8] YIN S,CAVALIERE P,ALDWELL B,et al. Additive Manufacturing[J] ,2018,21: 628-650.
[9] CAVALIERE P,SILVELLO A,Journal of Thermal Spray Technology[J] ,2017,26:661-670.
[10] ROKNI M R,WIDENER C A,CRAWFORD G A,et al. Surface and Coatings Technology[J] ,2015,276:305-315.
[11] ROKNI M R,WIDENER C A,CRAWFORD G A,et al. Materials Science and Engineering:A[J] ,2015,625:19-27.
[12] SABARD A,HUSSAIN T,et al.Journal of Thermal Spray Technology[J] ,2018,27:145-158.
[13] SABARD A,MCNUTT P,BEGG H,et al.Surface and Coatings Technology,2020,385:125367.
[14] ROKNI M R,WIDENER C A,CHEMPAGNE V K,Surface and Coatings Technology[J] ,2014,251:254-263.
[15] BI J K,ZCK LOKE,CKR LIM,et al.Aerospace[J] ,2022,9(2):65.
[16] XIANG Q,NAEEM UL HAQ TARIQ,WANG J Q,et al.Surface and Coatings Technology[J] ,2018,350:391-400.
[17] ONUR M,BERTRAND J,SABRI K.Surface and Coatings Technology[J] ,2013,235:108-116.
[18] WEI Y K,LUO X T,LI C J,Journal of Thermal Spray Technology[J] ,2017,26(1-2):173-183.
[19] Dosta S,GIOVANNI B,ALESSIA C,et al.Acta Materialia[J] ,2017,124:173-181.
備注/Memo
- 備注/Memo:
-
收稿日期:2023-06-05修回日期:2023-07-04
基金項(xiàng)目:國家自然科學(xué)基金資助項(xiàng)目(90816024);科技部“973”計(jì)劃項(xiàng)目(2006CB601206)
第一作者:韓曉輝,男,1977年生,教授級(jí)高工
通訊作者:雒曉濤,男,1986年生,教授,博士生導(dǎo)師
Email:luoxiaotao@xjtu.edu.cn
更新日期/Last Update:
2024-01-29