[1]賈哲豪,奚運濤,陳珍,等.高溫形狀記憶合金的研究現狀及應用前景[J].中國材料進展,2025,44(11):050-59.
JIA Zhehao,XI Yuntao,CHEN Zhen,et al.Research Status and Application Prospects of High Temperature Shape Memory Alloys[J].MATERIALS CHINA,2025,44(11):050-59.
點擊復制
高溫形狀記憶合金的研究現狀及應用前景()
中國材料進展[ISSN:1674-3962/CN:61-1473/TG]
- 卷:
-
44
- 期數:
-
2025年11
- 頁碼:
-
050-59
- 欄目:
-
- 出版日期:
-
2025-11-28
文章信息/Info
- Title:
-
Research Status and Application Prospects of High Temperature Shape Memory Alloys
- 作者:
-
賈哲豪; 奚運濤; 陳珍; 宋佳星; 田權偉; 王夢; 田謹
-
1. 西安石油大學 材料科學與工程學院,陜西 西安 710065
2. 西安稀有金屬材料研究院有限公司,陜西 西安 710016
- Author(s):
-
JIA Zhehao; XI Yuntao; CHEN Zhen; SONG Jiaxing; TIAN Quanwen; WANG Meng; TIAN Jin
-
1.School of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
2. Xi’an Rare Metal Materials Institute Co. Ltd., Xi’an, 710016, China
-
- 關鍵詞:
-
高溫形狀記憶合金; 馬氏體相變; 超彈性; 形狀記憶效應
- Keywords:
-
high temperature shape memory alloys; martensitic phase transition; superelasticity; shape memory effect
- 分類號:
-
TG139+.6
- 文獻標志碼:
-
A
- 摘要:
-
高溫形狀記憶合金(HTSMAs)可簡化設計、提高機械部件的運行效率,在汽車、航空航天、制造業和能源勘探領域有極大的應用潛力。實際應用中,除了高的相變溫度外,還要求HTSMAs具有較大的可回復應變、長期穩定性、抗塑性變形與抗蠕變的特性,但隨著溫度的升高,這些要求越來越難以滿足。此外,較差的可加工性與高昂的原材料成本,使這一類合金的工業化面臨較大的挑戰。盡管如此,通過成分控制、合金化、熱機械處理以及開發新的制備工藝,使得HTSMAs的研究取得了一定的進展。在目前研究的HTSMAs體系中,Ni-Ti基、Cu基以及Ni-Mn-Ga基HTSMAs最具潛力。本文對這三種HTSMAs的物理和熱機械性能、加工技術、應用和挑戰等方面進行簡要概述,總結了采用不同成分設計、合金化、熱處理及機械加工等方法制備HTSMAs材料的微觀結構及力學性能,提及了機器學習在輔助形狀記憶合金成分設計的發展前景,對目前各領域HTSMAs材料面臨的難題及未來的發展方向進行了歸納。
- Abstract:
-
High-temperature shape memory alloys (HTSMAs) have considerable potential for applications in automotive, aerospace, manufacturing, and energy exploration, as they simplify the design and improve the operational efficiency of mechanical components. In practice, in addition to high phase transition temperatures, HTSMAs are required to have large recoverable strains, long-term stability, and resistance to plastic deformation and creep. However, as temperatures rise, these requirements become increasingly difficult to meet. In addition, the poor processability and high raw material costs associated with this class of alloys present a significant challenge to their industrialization. Nevertheless, compositional control, alloying, thermo-mechanical treatment, and the development of new preparation processes have led to some progress in the study of HTSMAs. Among the HTSMA systems studied so far, Ni-Ti-based, Cu-based, and Ni-Mn-Ga-based HTSMAs have the most potential. This paper provides a brief overview of the physical and thermo-mechanical properties, processing technologies, applications, and challenges of the three HTSMAs. It also summarizes the microstructures and mechanical properties of HTSMA materials prepared using different compositional designs, alloying, and thermo-mechanical treatments. Furthermore, the development prospects of machine learning in assisting the design of shape memory alloy compositions are also included. It also provides an overview of the current challenges and future development directions of HTSMA materials in various fields.
更新日期/Last Update:
2025-10-30