[1]林奕希,蔣雨橋,馮相民,等.機器學(xué)習(xí)原子間勢分子動力學(xué)模擬在電化學(xué)儲能材料研究中的應(yīng)用進展[J].中國材料進展,2025,44(04):330-348.[doi:10.7502/j.issn.1674-3962.202409017]
LIN Yixi,JIANG Yuqiao,FENG Xiangmin,et al.Application Progress of Machine Learning Interatomic Potential Molecular Dynamics Simulations in the Research of Electrochemical Energy Storage Materials[J].MATERIALS CHINA,2025,44(04):330-348.[doi:10.7502/j.issn.1674-3962.202409017]
點擊復(fù)制
機器學(xué)習(xí)原子間勢分子動力學(xué)模擬在電化學(xué)儲能材料研究中的應(yīng)用進展(
)
中國材料進展[ISSN:1674-3962/CN:61-1473/TG]
- 卷:
-
44
- 期數(shù):
-
2025年04
- 頁碼:
-
330-348
- 欄目:
-
- 出版日期:
-
2025-04-30
文章信息/Info
- Title:
-
Application Progress of Machine Learning Interatomic Potential Molecular Dynamics Simulations in the Research of Electrochemical Energy Storage Materials
- 文章編號:
-
1674-3962(2025)04-0330-19
- 作者:
-
林奕希; 蔣雨橋; 馮相民; 要騰宇; 夏穎慧; 劉振輝; 鄭明波; 申來法; 許真銘
-
南京航空航天大學(xué)材料科學(xué)與技術(shù)學(xué)院 江蘇省高效電化學(xué)儲能技術(shù)重點實驗室,江蘇 南京 210016
- Author(s):
-
LIN Yixi; JIANG Yuqiao; FENG Xiangmin; YAO Tengyu; XIA Yinghui; LIU Zhenhui; ZHENG Mingbo; SHEN Laifa; XU Zhenming
-
Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
-
- 關(guān)鍵詞:
-
分子動力學(xué)模擬; 第一性原理計算; 機器學(xué)習(xí); 分子力場; 電化學(xué)儲能材料
- Keywords:
-
molecular dynamics simulation; firstprinciples calculation; machine learning; molecular force field; electrochemical energy storage materials
- 分類號:
-
TP181; TM912; TB34
- DOI:
-
10.7502/j.issn.1674-3962.202409017
- 文獻標(biāo)志碼:
-
A
- 摘要:
-
電化學(xué)儲能材料研究領(lǐng)域?qū)Ψ肿幽M有著切實的需求,而經(jīng)典分子動力學(xué)和從頭算分子動力學(xué)模擬因無法兼顧精度和效率的問題限制了分子模擬的廣泛應(yīng)用。近年來,基于機器學(xué)習(xí)方法構(gòu)建原子間勢模型得到了快速的發(fā)展,機器學(xué)習(xí)原子間勢分子動力學(xué)模擬可以兼顧經(jīng)典分子動力學(xué)模擬的計算效率和從頭算分子動力學(xué)模擬的準(zhǔn)確性。為了更好地呈現(xiàn)機器學(xué)習(xí)原子間勢分子動力學(xué)模擬技術(shù)在電化學(xué)儲能材料研究領(lǐng)域的應(yīng)用進展和前景,重點介紹了其在固體電解質(zhì)、電解液、電極/電解質(zhì)(液)界面等研究領(lǐng)域的應(yīng)用,并總結(jié)了材料領(lǐng)域機器學(xué)習(xí)原子間勢及其分子動力學(xué)模擬所存在的挑戰(zhàn)和機遇。
- Abstract:
-
There is a growing demand for molecular simulations in the field of electrochemical energy storage materials research. However, the widespread application of molecular simulations has been limited by the inability of the classical molecular dynamics and ab-initio molecular dynamics to balance the accuracy and efficiency. In recent years, the machine learning-based models for interatomic potentials have developed rapidly, offering the potential for the machine learning interatomic potential molecular dynamics (MLMD) simulations to achieve both the computational efficiency of the classical molecular dynamics and the accuracy of the ab-initio molecular dynamics. To better present the advancements and prospects of the MLMD simulation technology in the research of the electrochemical energy storage materials, this work focuses on its applications in solid electrolytes, electrolytes, and electrode/electrolyte interfaces, and summarizes the challenges and opportunities for the machine learning interatomic potentials and their molecular dynamics simulations in the materials field.
備注/Memo
- 備注/Memo:
-
收稿日期:2024-09-17修回日期:2024-11-14
基金項目:國家自然科學(xué)基金青年基金項目(22209074);江蘇省
碳達峰碳中和科技創(chuàng)新專項資金項目(BK20231512)
第一作者:林奕希,男,1999年生,碩士研究生
通訊作者:鄭明波,男,1980年生,副教授,碩士生導(dǎo)師,
Email:zhengmingbo@nuaa.edu.cn
申來法,男,1986年生,教授,博士生導(dǎo)師,
Email:lfshen@nuaa.edu.cn
許真銘,男,1990年生,副教授,碩士生導(dǎo)師,
Email:xuzhenming@nuaa.edu.cn
更新日期/Last Update:
2025-03-28