[1]閆姿霓,饒梓元,曾小勤.大語(yǔ)言模型在材料科學(xué)領(lǐng)域的研究進(jìn)展[J].中國(guó)材料進(jìn)展,2025,44(05):409-423.[doi:10.7502/j.issn.1674-3962.202409019]
YAN Zini,RAO Ziyuan,ZENG Xiaoqin.Research Progress of Large Language Models in the Field of Materials Science[J].MATERIALS CHINA,2025,44(05):409-423.[doi:10.7502/j.issn.1674-3962.202409019]
點(diǎn)擊復(fù)制
大語(yǔ)言模型在材料科學(xué)領(lǐng)域的研究進(jìn)展(
)
中國(guó)材料進(jìn)展[ISSN:1674-3962/CN:61-1473/TG]
- 卷:
-
44
- 期數(shù):
-
2025年05
- 頁(yè)碼:
-
409-423
- 欄目:
-
- 出版日期:
-
2025-05-30
文章信息/Info
- Title:
-
Research Progress of Large Language Models in the Field of Materials Science
- 文章編號(hào):
-
1674-3962(2025)05-0409-15
- 作者:
-
閆姿霓; 饒梓元; 曾小勤
-
1. 上海交通大學(xué) 輕合金精密成型國(guó)家研究中心,上海 200240
2. 上海交通大學(xué) 金屬基復(fù)合材料國(guó)家重點(diǎn)實(shí)驗(yàn)室,上海 200240
- Author(s):
-
YAN Zini; RAO Ziyuan; ZENG Xiaoqin
-
1.National Engineering Research Center of Light Alloy Net Forming,Shanghai Jiao Tong University, Shanghai 200240,China
2.State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
-
- 關(guān)鍵詞:
-
大語(yǔ)言模型; 自然語(yǔ)言處理; 機(jī)器學(xué)習(xí); 人工智能; 可解釋性; 材料科學(xué)
- Keywords:
-
large language model; natural language processing; machine learning; artificial intelligence; interpretability; materials science
- 分類號(hào):
-
TB30; TP18
- DOI:
-
10.7502/j.issn.1674-3962.202409019
- 文獻(xiàn)標(biāo)志碼:
-
A
- 摘要:
-
數(shù)據(jù)驅(qū)動(dòng)方法已成為材料研究的重要趨勢(shì),大語(yǔ)言模型的出現(xiàn)不僅為材料科學(xué)領(lǐng)域非結(jié)構(gòu)化數(shù)據(jù)的處理提供了潛在的解決方案,還能夠通過(guò)其強(qiáng)大的語(yǔ)言理解和生成能力,助力科研中的知識(shí)發(fā)現(xiàn)、自動(dòng)化分析、可解釋性提升以及多模塊協(xié)同操作,從而可推動(dòng)材料科學(xué)研究的效率提升與創(chuàng)新突破。從大語(yǔ)言模型的理論基礎(chǔ)出發(fā),探討其重要功能、優(yōu)化方法及其在材料科學(xué)中的應(yīng)用。特別是,大語(yǔ)言模型能夠有效處理和提取非結(jié)構(gòu)化文本中的關(guān)鍵信息,幫助加速材料的發(fā)現(xiàn)與設(shè)計(jì)。最后還展望了大語(yǔ)言模型在人工智能與材料科學(xué)融合領(lǐng)域的未來(lái)發(fā)展前景,指出其在推動(dòng)材料科學(xué)研究自動(dòng)化和智能化方面的巨大潛力。
- Abstract:
-
Data-driven approaches have become an important trend in materials research. The emergence of large language models not only provides a potential solution for unstructured data processing in the field of materials science, but also, through their powerful language understanding and generation capabilities, facilitates knowledge discovery, automated analysis, improved interpretability, and multi-module collaborative operations, thus enhancing research efficiency and driving breakthroughs in materials science. This article explores the theoretical foundations of large language models, examines their key functions, optimization methods, and applications in materials science. In particular, large language models can effectively process and extract key information from unstructured texts, helping to accelerate material discovery and design. This article also envisions the future development of large language models in the integration of artificial intelligence and materials science, highlighting their significant potential in advancing the automation and intelligence of materials research.
備注/Memo
- 備注/Memo:
-
收稿日期:2024-09-18修回日期:2024-12-12
基金項(xiàng)目:國(guó)家杰出青年科學(xué)基金延續(xù)資助項(xiàng)目(52425101);國(guó)家自然科學(xué)基金優(yōu)秀青年科學(xué)基金項(xiàng)目(海外)(52401216)
第一作者:閆姿霓,女,2002年生,博士研究生
通訊作者:饒梓元,男,1991年生,副教授,博士生導(dǎo)師,
Email:ziyuanrao@sjtu.edu.cn
曾小勤,男,1974年生,教授,博士生導(dǎo)師,
Email:xqzeng@sjtu.edu.cn
更新日期/Last Update:
2025-04-27